183 research outputs found

    Interchannel coupling effects in the spin polarization of energetic photoelectrons

    Full text link
    Effects of the interchannel coupling on the spin polarization of energetic photoelectrons emitted from atomic Ne valence subshells are examined. Like previously obtained results for cross sections and angular distributions, the photoelectron spin polarization parameters too are found considerably influenced by the coupling. The result completes a series of studies to finally conclude that the independent particle description is inadequate for the {\em entire} range of photoionization dynamics over the {\em full} spectral energy domainComment: 7 pages, 5 figures, accepted in Phys. Rev.

    Electro-optically tunable microring resonators in lithium niobate

    Full text link
    Optical microresonators have recently attracted a growing attention in the photonics community. Their applications range from quantum electro-dynamics to sensors and filtering devices for optical telecommunication systems, where they are likely to become an essential building block. The integration of nonlinear and electro-optical properties in the resonators represents a very stimulating challenge, as it would incorporate new and more advanced functionality. Lithium niobate is an excellent candidate material, being an established choice for electro-optic and nonlinear optical applications. Here we report on the first realization of optical microring resonators in submicrometric thin films of lithium niobate. The high index contrast films are produced by an improved crystal ion slicing and bonding technique using benzocyclobutene. The rings have radius R=100 um and their transmission spectrum has been tuned using the electro-optic effect. These results open new perspectives for the use of lithium niobate in chip-scale integrated optical devices and nonlinear optical microcavities.Comment: 15 pages, 8 figure

    An objective comparison of cell-tracking algorithms

    Get PDF
    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge

    BMP axis in cancer cachexia

    Get PDF
    BACKGROUND Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although cancer cachexia is responsible for about 25% of cancer deaths, no effective therapies are available, and the underlying mechanisms have not been fully elucidated. Its occurrence complicates patients’ management, reduces tolerance to treatments and negatively affects patient quality of life. Muscle wasting, mainly due to increased protein breakdown rates, is one of the most prominent features of cachexia. Blocking muscle loss in cachexia mouse models dramatically prolongs survival even of animals in which tumor growth is not inhibited. Recent observations showed that bone morphogenetic protein (BMP) signaling, acting through Smad1, Smad5 and Smad8 (Smad1/5/8), is a master regulator of muscle homeostasis. BMP-Smad1/5/8 axis negatively regulates a novel ubiquitin ligase (MUSA1) required for muscle loss induced by denervation. MATERIALS AND METHODS First aim of the present work was to test if alterations of the BMP signaling pathway occur in cancer-induced muscle wasting in patients. For this purpose we checked the state of activation of the BMP pathway in muscle of cachectic vs non–cachectic patients affected by colon, pancreatic and esophagus cancer and in control subjects. We checked by Western Blot the phosphorylation levels of Smad1/5/8 and of Smad3 and by quantitative Real-Time PCR (qRT-PCR) the expression levels of different atrophy-related genes The second aim was to evaluate the degree of muscle atrophy and distribution of muscle fibers in patients and control subjects using morphometric and immunohistochemical analyses. We also performed analysis on distribution of NCAM positive muscle fibers to assess the effect of denervation on muscle tropism. RESULTS From December 2014 we collected 95 rectus abdominis muscle biopsies of cancer patients and 11 from control subjects. In line with the results we obtained in C26 mice model (a well-established cancer cachexia experimental model) Smad1/5/8 phosphorylation, readout of the state of activation of the BMP pathway, was nearly completely abrogated in the muscles of cancer cachectic patients compared to cancer non-cachectic ones. Interestingly, the level of phosphorylation of Smad3 was not significantly affected suggesting specific effects of cancer growth on BMP pathway. The expression levels of different atrophy-related genes including MUSA1 were induced in the cachectic muscles. Interestingly, several BMP related genes are also changing the expression during cancer growth. We also found a correlation between suppression of BMP pathway, expression of atrophy related genes and Noggin, known to block BMP pathway. Morphometric analysis shown that patients with cancer cachexia have smaller myofiber diameter (in particular fast type fibers) in comparison to age-matched controls. In skeletal muscle from cancer patients (either cachectic or non-cachectic) we detected a prevalence of flat shaped, angulated and severely atrophic myofibers (i.e. morphological features of denervated myofibers), big fiber-type grouping (i.e. typical hallmark of denervation/reinnervation events) and numerous NCAM positive myofibers (i.e. specific marker of denervation). CONCLUSIONS These findings are consistent with the hypothesis that BMP inhibition is permissive to cachexia onset. Since the reactivation of the BMP-dependent signaling and MUSA1 suppression was sufficient to prevent tumor-induced muscle atrophy in our C26 mouse model (data not shown), the present data suggest that the BMP axis can be an effective target for therapeutic approaches to counteract cachexia also in cancer patients. The results of morphometric and immunohistochemical studies collected till now may suggest that denervation contributes to myofiber atrophy in cancer cachexia

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease
    corecore