136 research outputs found

    Oral mucosal diseases in anxiety and depression patients: Hospital based observational study from south India

    Get PDF
    Objectives: The objective of this study was to evaluate the prevalence of different Oral Mucosal diseases in Anxiety and Depression patients. Material and Methods: A hospital based observational Study was conducted in the department of Psychiatry and department of Oral Medicine and Radiology. Patients who were diagnosed with Anxiety or Depression by the psy - chiatrists using Hamilton Anxiety and Depression scale were subjected to complete oral examination to check for oral diseases like Oral Lichen Planus (OLP), Recurrent Aphthous Stomatitis (RAS), and Burning Mouth Syndrome (BMS). Equal number of control group subjects were also included. Results: In this study statistically significant increase in the oral diseases in patients with anxiety and depression than the control group was recorded. Oral diseases were significantly higher in anxiety patients (20.86%) than in depression (9.04%) and control group patients (5.17%). In anxiety patients, the prevalence of RAS was 12%, OLP was 5.7%, and BMS was 2.87%. In depression patients, the prevalence of RAS was 4.02%, OLP was 2.01% and BMS was 3.01%. In control group the prevalence was 2.2%, 1.33% and 1.62% in RAS, OLP and BMS respecti - vely. RAS and OLP were significantly higher in the younger age group (18-49) and BMS was seen between the age group of 50-77 years in both study and control groups. Conclusions: The results of the present study showed a positive association between psychological alterations and changes in the oral mucosa, particularly conditions like OLP, RAS and BMS. Thus psychogenic factors like anxiety and depression may act as a risk factor that could influence the initiation and development of oral mucosal diseases. Hence psychological management should be taken into consideration when treating patients with these oral diseases

    Biochemical Properties of a Novel Cysteine Protease of Plasmodium vivax, Vivapain-4

    Get PDF
    Plasmodium vivax affects hundreds of millions each year and results in severe morbidity and mortality. Plasmodial cysteine proteases (CPs) play crucial roles during the progression of malaria since inhibition of these molecules impairs parasite growth. These CPs might be targeted for new antimalarial drugs. We characterized a novel P. vivax CP, vivapain-4 (VX-4), which appeared to evolve differentially among primate Plasmodium species. VX-4 showed highly unique substrate preference depending on surrounding micro-environmental pH. It effectively hydrolyzed benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA) and Z-Phe-Arg-MCA at acidic pH and Z-Arg-Arg-MCA at neutral pH. Three amino acids (Ala90, Gly157 and Glu180) that delineate the S2 pocket were found to be substituted in VX-4. Alteration of Glu180 abolished hydrolytic activity against Z-Arg-Arg-MCA at neutral pH, indicating Glu180 is intimately involved in the pH-dependent substrate preference. VX-4 hydrolyzed actin at neutral pH and hemoglobin at acidic pH, and participated in plasmepsin 4 activation at neutral/acidic pH. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. The differential substrate preferences depending on pH suggested a highly efficient mechanism to enlarge biological implications of VX-4, including hemoglobin degradation, maturation of plasmepsin, and remodeling of the parasite architecture during growth and development of P. vivax

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Mechanical stability of the CMS strip tracker measured with a laser alignment system

    Get PDF
    Peer reviewe

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Test beam performance measurements for the Phase I upgrade of the CMS pixel detector

    Get PDF
    A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) μm and (7.99 ± 0.21) μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Get PDF
    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Phi(eq) = 2x10(16) cm(-2), and an ionising dose of approximate to 5 MGy after an integrated luminosity of 3000 fb(-1). Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 mu m thick p-bulk pad diodes and strip sensors irradiated up to fluences of Phi(eq) = 1.3 x 10(16) cm(-2) are shown.Peer reviewe

    Measurement of the mass difference m(D-s(+))-m(D+) at CDF II

    Get PDF
    We present a measurement of the mass difference m(D-s(+))-m(D+), where both the D-s(+) and D+ are reconstructed in the phipi(+) decay channel. This measurement uses 11.6 pb(-1) of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be m(D-s(+))-m(D+)=99.41+/-0.38(stat)+/-0.21(syst) MeV/c(2)
    corecore