111 research outputs found

    Complete revascularization with multivessel PCI for myocardial infarction

    Get PDF
    BACKGROUND In patients with ST-segment elevation myocardial infarction (STEMI), percutaneous coronary intervention (PCI) of the culprit lesion reduces the risk of cardiovascular death or myocardial infarction. Whether PCI of nonculprit lesions further reduces the risk of such events is unclear. METHODS We randomly assigned patients with STEMI and multivessel coronary artery disease who had undergone successful culprit-lesion PCI to a strategy of either complete revascularization with PCI of angiographically significant nonculprit lesions or no further revascularization. Randomization was stratified according to the intended timing of nonculprit-lesion PCI (either during or after the index hospitalization). The first coprimary outcome was the composite of cardiovascular death or myocardial infarction; the second coprimary outcome was the composite of cardiovascular death, myocardial infarction, or ischemia-driven revascularization. RESULTS At a median follow-up of 3 years, the first coprimary outcome had occurred in 158 of the 2016 patients (7.8%) in the complete-revascularization group as compared with 213 of the 2025 patients (10.5%) in the culprit-lesion-only PCI group (hazard ratio, 0.74; 95% confidence interval [CI], 0.60 to 0.91; P=0.004). The second coprimary outcome had occurred in 179 patients (8.9%) in the complete-revascularization group as compared with 339 patients (16.7%) in the culprit-lesion-only PCI group (hazard ratio, 0.51; 95% CI, 0.43 to 0.61; P<0.001). For both coprimary outcomes, the benefit of complete revascularization was consistently observed regardless of the intended timing of nonculprit-lesion PCI (P=0.62 and P=0.27 for interaction for the first and second coprimary outcomes, respectively). CONCLUSIONS Among patients with STEMI and multivessel coronary artery disease, complete revascularization was superior to culprit-lesion-only PCI in reducing the risk of cardiovascular death or myocardial infarction, as well as the risk of cardiovascular death, myocardial infarction, or ischemia-driven revascularization. (Funded by the Canadian Institutes of Health Research and others; COMPLETE ClinicalTrials.gov number, NCT01740479. opens in new tab.

    Long-acting antipsychotic drugs for the treatment of schizophrenia: use in daily practice from naturalistic observations

    Full text link

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Study of D-(*())(+)(sJ) mesons decaying to D*K-+(S)0 and D*K-0(+) final states

    Get PDF
    A search is performed for DsJ()+D^{(*)+}_{sJ} mesons in the reactions ppD+KS0Xpp \to D^{*+} K^0_{\rm S} X and ppD0K+Xpp \to D^{*0} K^+ X using data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. For the D+KS0D^{*+} K^0_{\rm S} final state, the decays D+D0π+D^{*+} \to D^0 \pi^+ with D0Kπ+D^0 \to K^- \pi^+ and D0Kπ+π+πD^0 \to K^- \pi^+ \pi^+ \pi^- are used. For D0K+D^{*0} K^+, the decay D0D0π0D^{*0} \to D^0 \pi^0 with D0Kπ+D^0 \to K^- \pi^+ is used. A prominent Ds1(2536)+D_{s1}(2536)^+ signal is observed in both D+KS0D^{*+} K^0_{\rm S} and D0K+D^{*0} K^+ final states. The resonances Ds1(2700)+D^*_{s1}(2700)^+ and Ds3(2860)+D^*_{s3}(2860)^+ are also observed, yielding information on their properties, including spin-parity assignments. The decay Ds2(2573)+D+KS0D^*_{s2}(2573)^+ \to D^{*+} K^0_{\rm S} is observed for the first time, at a significance of 6.9 σ\sigma, and its branching fraction relative to the Ds2(2573)+D+KS0D^*_{s2}(2573)^+ \to D^+ K^0_{\rm S} decay mode is measured

    Search for Violations of Lorentz Invariance and CPT Symmetry in B-(s)(0) Mixing

    Get PDF
    Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3  fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14})  GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed
    corecore