919 research outputs found
Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions
At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe
The novel XYU-GEM to resolve ambiguities
Removing ambiguities within a single stage becomes crucial when one can not
use multiple detectors behind each other to resolve them which naturally is the
case for neutral radiation. An example would be RICH detectors. Commonly
pixilated readout is choosen for this purpose. However, this causes a
remarkable increase in quantity of channels and does not scale up well.
Therefore, the XYU-GEM was proposed as a three coordinate strip-readout which
is combined with a triple GEM detector. The readout complements a common XY
readout with an additional projection which is tilted by 45{\deg}. The
overdetermination due to three projections can be used to resovle ambiguities.
Following the detector design will be explained, first measurements discussed
to understand the response of the detector and a way to change the charge
sharing without changing the manufacturing parameters of the readout
Rate-capability of the VMM3a front-end in the RD51 Scalable Readout System
The VMM3a is an Application Specific Integrated Circuit (ASIC), specifically developed for the readout of gaseous detectors. Originally developed within the ATLAS New Small Wheel (NSW) upgrade, it has been successfully integrated into the Scalable Readout System (SRS) of the RD51 collaboration. This allows, to use the VMM3a also in small laboratory set-ups and mid-scale experiments, which make use of Micro-Pattern Gaseous Detectors (MPGDs). As part of the integration of the VMM3a into the SRS, the readout and data transfer scheme was optimised to reach a high rate-capability of the entire readout system and profit from the VMM3a’s high single-channel rate-capability of 3.6 Mhits∕s. The optimisation focused mainly on the handling of the data output stream of the VMM3a, but also on the development of a trigger-logic between the front-end cards and the DAQ computer. In this article, two firmware implementations of the non-ATLAS continuous readout mode are presented, as well as the implementation of the trigger-logic. Afterwards, a short overview on X-ray imaging results is presented, to illustrate the high rate-capability from an application point-of-view.Peer reviewe
X-ray imaging with gaseous detectors using the VMM3a and the SRS
The integration of the VMM3a Application-Specific Integrated Circuit (ASIC) into RD51's Scalable Readout System (SRS) provides a versatile tool for the readout of Micro-Pattern Gaseous Detectors (MPGDs). With its self-triggered high-rate readout, its analogue part that allows to get information on the deposited energy in the detector, and its so-called neighbouring-logic that allows to recover information on the charge distribution, this new system has features of particular interest for digital X-ray imaging. In the present article, we want to emphasise the capabilities of VMM3a/SRS by presenting results of X-ray imaging studies. We will highlight the advantages on the energy and the spatial resolution provided by the neighbouring-logic. In the first part, we focus on spatial resolution studies. We show how segmented readout structures introduce a repeating pattern in the distribution of the reconstructed positions (using the centre-of-gravity method) and how this behaviour can be mitigated with the neighbouring-logic. As part of these studies, we explore as well an alternative position reconstruction algorithm. In the second part of the article, we present the energy resolution studies.Peer reviewe
Precise timing and recent advancements with segmented anode PICOSEC Micromegas prototypes
Timing information in current and future accelerator facilities is important
for resolving objects (particle tracks, showers, etc.) in extreme large
particles multiplicities on the detection systems. The PICOSEC Micromegas
detector has demonstrated the ability to time 150\,GeV muons with a sub-25\,ps
precision. Driven by detailed simulation studies and a phenomenological model
which describes stochastically the dynamics of the signal formation, new
PICOSEC designs were developed that significantly improve the timing
performance of the detector. PICOSEC prototypes with reduced drift gap size
(\SI{119}{\micro\metre}) achieved a resolution of 45\,ps in timing single
photons in laser beam tests (in comparison to 76\,ps of the standard PICOSEC
detector). Towards large area detectors, multi-pad PICOSEC prototypes with
segmented anodes has been developed and studied. Extensive tests in particle
beams revealed that the multi-pad PICOSEC technology provides also very precise
timing, even when the induced signal is shared among several neighbouring pads.
Furthermore, new signal processing algorithms have been developed, which can be
applied during data acquisition and provide real time, precise timing.Comment: 5 pages, 3 figures, 12th International Conference on Position
Sensitive Detector
Single channel PICOSEC Micromegas detector with improved time resolution
This paper presents design guidelines and experimental verification of a
single-channel PICOSEC Micromegas (MM) detector with an improved time
resolution. The design encompasses the detector board, vessel, auxiliary
mechanical parts, and electrical connectivity for high voltage (HV) and
signals, focusing on improving stability, reducing noise, and ensuring signal
integrity to optimize timing performance. A notable feature is the simple and
fast reassembly procedure, facilitating quick replacement of detector internal
components that allows for an efficient measurement strategy involving
different detector components. The paper also examines the influence of
parasitics on the output signal integrity. To validate the design, a prototype
assembly and three interchangeable detector boards with varying readout pad
diameters were manufactured. The detectors were initially tested in the
laboratory environment. Finally, the timing performance of detectors with
different pad sizes was verified using a Minimum Ionizing Particle (MIP) beam
test. Notably, a record time resolution for a PICOSEC Micromegas detector
technology with a CsI photocathode of 12.50.8 ps was achieved with a 10 mm
diameter readout pad size detector
Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPWe present the first measurement of the two-particle transverse momentum differential correlation function, P-2 = <Delta pT Delta p(T)gt;/ < p(T)gt;(2), in Pb-Pb collisions at root s(NN) = 2.76 TeV. Results for P-2 are reported as a function of the relative pseudorapidity (Delta eta) and azimuthal angle (Delta phi) between two particles for different collision centralities. The Delta phi dependence is found to be largely independent of Delta eta for broken vertical bar Delta eta broken vertical bar gt;= 0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Delta phi=pi (i. e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P-2, studied as a function of the collision centrality, show that correlations at broken vertical bar Delta eta broken vertical bar gt;= 0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system.11816112CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration thanks all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science and Technology of China (MSTC), National Natural Science Foundation of China (NSFC), and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research-Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat a l'Energie Atomique (CEA) and Institut National de Physique Nucleaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnologia, through Fondo de Cooperacion Internacional en Ciencia y Tecnologia (FONCICYT) and Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Catolica del Peru, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America
Measurement of the production of high-p(T) electrons from heavy-flavour hadron decays in Pb-Pb collisions at root s(NN)=2.76 TeV
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPElectrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy root s(NN) = 2.76 TeV. The transverse momentum (pT) differential production yields at mid-rapidity were used to calculate the nuclear modification factor R-AA in the interval 3 < p(T) < 18 GeV/c. The R-AA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb-Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50-80%) collisions is observed. The suppression of electrons in this broad p(T) interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb-Pb collisions at LHC.771467481CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Education of China (MOE of China), Ministry of Science & Technology of China (MOST of China) and National Natural Science Foundation of China (NSFC), China; Ministry of Science, Education and Sports and Croatian Science Foundation, Croatia; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; Danish National Research Foundation (DNRF), The Carlsberg Foundation and The Danish Council for Independent Research–Natural Sciences, Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y Tecnología (CONACYT), through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), South Korea; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Ministerio de Ciencia e Innovacion, Spain; Knut & Alice Wallenberg Foundation (KAW) and Swedish Research Council (VR), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Office of the Higher Education Commission under NRU project of Thailand and Suranaree University of Technology (SUT), Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States
Particle identification studies with a full-size 4-GEM prototype for the ALICE TPC upgrade
A large Time Projection Chamber is the main device for tracking and
charged-particle identification in the ALICE experiment at the CERN LHC. After
the second long shutdown in 2019/20, the LHC will deliver Pb beams colliding at
an interaction rate of about 50 kHz, which is about a factor of 50 above the
present readout rate of the TPC. This will result in a significant improvement
on the sensitivity to rare probes that are considered key observables to
characterize the QCD matter created in such collisions. In order to make full
use of this luminosity, the currently used gated Multi-Wire Proportional
Chambers will be replaced. The upgrade relies on continuously operated readout
detectors employing Gas Electron Multiplier technology to retain the
performance in terms of particle identification via the measurement of the
specific energy loss by ionization d/d. A full-size readout chamber
prototype was assembled in 2014 featuring a stack of four GEM foils as an
amplification stage. The performance of the prototype was evaluated in a test
beam campaign at the CERN PS. The d/d resolution complies with both the
performance of the currently operated MWPC-based readout chambers and the
challenging requirements of the ALICE TPC upgrade program. Detailed simulations
of the readout system are able to reproduce the data.Comment: Submitted to NIM
- …
