174 research outputs found

    Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    Get PDF
    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail

    GRB 020813: polarization in the case of a smooth optical decay

    Get PDF
    We present the results of a VLT polarimetric monitoring campaign of the GRB 020813 optical afterglow carried out in three nights, from 0.88 to 4.20 days after the gamma-ray event. The mean values of the degree of linear polarization (P) and its position angle (Theta) resulting from our campaign are =1.18+/-0.10% and Theta = 148.7+/-2.3 deg after correcting for Galactic interstellar polarization. Our VLT data set is most naturally described by a constant degree of linear polarization and position angle, nonetheless a slow Theta evolution cannot be entirely ruled out by our data. The VLT monitoring campaign did not reveal either a significant Theta rotation respect to the Keck spectropolarimetric observations performed ~0.25 days after the GRB (Barth et al. 2003). However, is a factor of two lower than the polarization degree measured from Keck. Additionally, the VLT polarization data allowed us to construct an accurate V-band light curve. The V-band photometric data revealed a smooth light curve with a break located between the last Keck and our first VLT polarimetric measurement, 0.33 < t_(break, V) < 0.88 days after the GRB. The typical magnitude fluctuations of the VLT V-band lightcurve are 0.003 mag, 0.010 mag and 0.016 mag for our three observing nights, respectively. We speculate that the stability of Theta might be related to the smoothness of the light curve.Comment: 7 pages, 2 figures, accepted for publication in A&A. Minor changes included with respect to the previously posted versio

    The shallow-decay phase in both optical and x-ray afterglows of Swift GRB 090529A: Energy injection into a wind-type medium?

    Full text link
    The energy injection model is usually proposed to interpret the shallow-decay phase in Swift GRB X-ray afterglows. However, very few GRBs have simultaneous signatures of energy injection in their optical and X-ray afterglows. Here, we report optical observations of GRB 090529A from 2000 sec to 106\sim10^6 sec after the burst, in which an achromatic decay is seen at both wavelengths. The optical light curve shows a decay from 0.37 to 0.99 with a break at 105\sim10^5 sec. In the same time interval, the decay indices of the X-ray light curve changed from 0.04 to 1.2. Comparing these values with the closure relations, the segment after 3×104\times10^{4} sec is consistent with the prediction of the forward shock in an ISM medium without any energy injection. The shallow-decay phase between 2000 to 3×104\times10^{4} sec could be due to the external shock in a wind-type-like medium with an energy injection under the condition of νo<νc<νx\nu_o < \nu_c < \nu_x. However, the constraint of the spectral region is not well consistent with the multi-band observations. For this shallow-decay phase, other models are also possible, such as energy injection with evolving microphysical parameters, or a jet viewed off-axis,etc.Comment: 19pages,2gigures, accepted by MNRA

    Identifying the Location in the Host Galaxy of the Short GRB 111117A with the Chandra Sub-arcsecond Position

    Full text link
    We present our successful Chandra program designed to identify, with sub-arcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31_{-0.23}^{+0.46} (90% confidence), making it one of the highest known short GRB redshifts. Furthermore, we see an offset of 1.0 +- 0.2 arcseconds, which corresponds to 8.4 +- 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond X-ray localizations of short GRB afterglows to study GRB environments.Comment: 17 pages, 11 figures, accepted for publication in Ap

    Panchromatic Observations of the Textbook GRB 110205A: Constraining Physical Mechanisms of Prompt Emission and Afterglow

    Get PDF
    We present a comprehensive analysis of a bright, long duration (T(sub 90) approx. 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray band. Thanks to its long duration, nearly 200 s of observations were obtained simultaneously from optical, X-ray to gamma-ray (1 eV - 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution across 6 orders of magnitude in energy during the prompt emission phase. In particular, by fitting the time resolved prompt spectra, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard GRB synchrotron emission model in the fast cooling regime. Although the prompt optical emission is brighter than the extrapolation of the best fit X/ -ray spectra, it traces the -ray light curve shape, suggesting a relation to the prompt high energy emission. The synchrotron + synchrotron self-Compton (SSC) scenario is disfavored by the data, but the models invoking a pair of internal shocks or having two emission regions can interpret the data well. Shortly after prompt emission (approx. 1100 s), a bright (R = 14.0) optical emission hump with very steep rise ( alpha approx. 5.5) was observed which we interpret as the emission from the reverse shock. It is the first time that the rising phase of a reverse shock component has been closely observed

    The nature of the late achromatic bump in GRB 120326A

    Get PDF
    The long Swift{\it Swift} gamma-ray burst GRB 120326A at redshift z=1.798z=1.798 exhibited a multi-band light curve with a striking feature: a late-time, long-lasting achromatic rebrightening, rarely seen in such events. Peaking in optical and X-ray bands 35\sim 35 ks (12.5\sim 12.5 ks in the GRB rest frame) after the 70-s GRB prompt burst, the feature brightens nearly two orders of magnitude above the underlying optical power-law decay. Modelling the multiwavelength light curves, we investigate possible causes of the rebrightening in the context of the standard fireball model. We exclude a range of scenarios for the origin of this feature: reverse-shock flash, late-time forward shock peak due to the passage of the maximal synchrotron frequency through the optical band, late central engine optical/X-ray flares, interaction between the expanding blast wave and a density enhancement in the circumburst medium and gravitational microlensing. Instead we conclude that the achromatic rebrightening may be caused by a refreshed forward shock or a geometrical effect. In addition, we identify an additional component after the end of the prompt emission, that shapes the observed X-ray and optical light curves differently, ruling out a single overall emission component to explain the observed early time emission

    Panchromatic observations of the textbook GRB 110205A: Constraining physical mechanisms of prompt emission and afterglow

    Get PDF
    We present a comprehensive analysis of a bright, long-duration (T 90 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the γ-ray band, with optical light curve showing correlation with γ-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to γ-ray (1 eV to 5MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission (1100s), a bright (R = 14.0) optical emission hump with very steep rise (α 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R GRB 3 × 1013cm), initial Lorentz factor of the outflow (Γ0 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget. © 2012. The American Astronomical Society. All rights reserved.

    Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM) on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals.</p> <p>Methods</p> <p>In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn), an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn) was determined by real-time PCR in blood DNA obtained on the 1<sup>st </sup>(time 1) and 4<sup>th </sup>day (time 2) of the same work week. Individual exposures to PM<sub>10</sub>, PM<sub>1</sub>, coarse particles (PM<sub>10</sub>-PM<sub>1</sub>) and airborne metal components of PM<sub>10 </sub>(chromium, lead, arsenic, nickel, manganese) were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area.</p> <p>Results</p> <p>RMtDNAcn was higher on the 4<sup>th </sup>day (mean = 1.31; 95%CI = 1.22 to 1.40) than on the 1<sup>st </sup>day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17). PM exposure was positively associated with RMtDNAcn on either the 4<sup>th </sup>(PM<sub>10</sub>: β = 0.06, 95%CI = -0.06 to 0.17; PM<sub>1</sub>: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17) or the 1<sup>st </sup>day (PM<sub>10</sub>: β = 0.18, 95%CI = 0.09 to 0.26; PM<sub>1</sub>: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26). Metal concentrations were not associated with RMtDNAcn.</p> <p>Conclusions</p> <p>PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.</p

    Panchromatic Observations of the Textbook GRB 110205A: Constraining Physical Mechanisms of Prompt Emission and Afterglow

    Get PDF
    We present a comprehensive analysis of a bright, long-duration ( T 90 ~ 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift /UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the γ-ray band, with optical light curve showing correlation with γ-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to γ-ray (1 eV to 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission (~1100 s), a bright ( R = 14.0) optical emission hump with very steep rise (α ~ 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission ( R GRB ~ 3 × 10 13 cm), initial Lorentz factor of the outflow (Γ 0 ~ 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98559/1/0004-637X_751_2_90.pd
    corecore