84 research outputs found

    Biconed graphs, edge-rooted forests, and h-vectors of matroid complexes

    Full text link
    A well-known conjecture of Richard Stanley posits that the hh-vector of the independence complex of a matroid is a pure O{\mathcal O}-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified `coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs. We study the hh-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of `edge-rooted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the M\"obius coinvariant (the last nonzero entry of the hh-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially edge-rooted forests gives rise to a pure multicomplex whose face count recovers the hh-vector, establishing Stanley's conjecture for this class of matroids.Comment: 15 pages, 3 figures; V2: added omitted author to metadat

    a genomics based approach identifies a thioviridamide like compound with selective anticancer activity

    Get PDF
    Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of th..

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    A Battle Lost? Report on Two Centuries of Invasion and Management of Lantana camara L. in Australia, India and South Africa

    Get PDF
    Recent discussion on invasive species has invigorated the debate on strategies to manage these species. Lantana camara L., a shrub native to the American tropics, has become one of the worst weeds in recorded history. In Australia, India and South Africa, Lantana has become very widespread occupying millions of hectares of land. Here, we examine historical records to reconstruct invasion and management of Lantana over two centuries and ask: Can we fight the spread of invasive species or do we need to develop strategies for their adaptive management? We carried out extensive research of historical records constituting over 75% of records on invasion and management of this species in the three countries. The records indicate that governments in Australia, India and South Africa have taken aggressive measures to eradicate Lantana over the last two centuries, but these efforts have been largely unsuccessful. We found that despite control measures, the invasion trajectory of Lantana has continued upwards and that post-war land-use change might have been a possible trigger for this spread. A large majority of studies on invasive species address timescales of less than one year; and even fewer address timescales of >10 years. An understanding of species invasions over long time-scales is of paramount importance. While archival records may give only a partial picture of the spread and management of invasive species, in the absence of any other long-term dataset on the ecology of Lantana, our study provides an important insight into its invasion, spread and management over two centuries and across three continents. While the established paradigm is to expend available resources on attempting to eradicate invasive species, our findings suggest that in the future, conservationists will need to develop strategies for their adaptive management rather than fighting a losing battle

    Economic Analysis of Labor Markets and Labor Law: An Institutional/Industrial Relations Perspective

    Get PDF

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Directional trends in species composition over time can lead to a widespread overemphasis of year‐to‐year asynchrony

    Get PDF
    Questions: Compensatory dynamics are described as one of the main mechanisms that increase community stability, e.g., where decreases of some species on a year‐to‐year basis are offset by an increase in others. Deviations from perfect synchrony between species (asynchrony) have therefore been advocated as an important mechanism underlying biodiversity effects on stability. However, it is unclear to what extent existing measures of synchrony actually capture the signal of year‐to‐year species fluctuations in the presence of long‐term directional trends in both species abundance and composition (species directional trends hereafter). Such directional trends may lead to a misinterpretation of indices commonly used to reflect year‐to‐year synchrony. Methods: An approach based on three‐term local quadrat variance (T3) which assesses population variability in a three‐year moving window, was used to overcome species directional trend effects. This “detrending” approach was applied to common indices of synchrony across a worldwide collection of 77 temporal plant community datasets comprising almost 7,800 individual plots sampled for at least six years. Plots included were either maintained under constant “control” conditions over time or were subjected to different management or disturbance treatments. Results: Accounting for directional trends increased the detection of year‐to‐year synchronous patterns in all synchrony indices considered. Specifically, synchrony values increased significantly in ~40% of the datasets with the T3 detrending approach while in ~10% synchrony decreased. For the 38 studies with both control and manipulated conditions, the increase in synchrony values was stronger for longer time series, particularly following experimental manipulation. Conclusions: Species’ long‐term directional trends can affect synchrony and stability measures potentially masking the ecological mechanism causing year‐to‐year fluctuations. As such, previous studies on community stability might have overemphasised the role of compensatory dynamics in real‐world ecosystems, and particularly in manipulative conditions, when not considering the possible overriding effects of long‐term directional trends

    LOTVS: a global collection of permanent vegetation plots

    Get PDF
    Analysing temporal patterns in plant communities is extremely important to quantify the extent and the consequences of ecological changes, especially considering the current biodiversity crisis. Long-term data collected through the regular sampling of permanent plots represent the most accurate resource to study ecological succession, analyse the stability of a community over time and understand the mechanisms driving vegetation change. We hereby present the LOng-Term Vegetation Sampling (LOTVS) initiative, a global collection of vegetation time-series derived from the regular monitoring of plant species in permanent plots. With 79 data sets from five continents and 7,789 vegetation time-series monitored for at least 6 years and mostly on an annual basis, LOTVS possibly represents the largest collection of temporally fine-grained vegetation time-series derived from permanent plots and made accessible to the research community. As such, it has an outstanding potential to support innovative research in the fields of vegetation science, plant ecology and temporal ecology
    • 

    corecore