42 research outputs found

    Using Cluster Analysis to Identify Subgroups of College Students at Increased Risk for Cardiovascular Disease

    Full text link
    Background and Purpose: To examine the co-occurrence of cardiovascular risk factors and cluster subgroups of college students for cardiovascular risks. Methods: A cross sectional descriptive study was conducted using co-occurrence patterns and hierarchical clustering analysis in 158 college students. Results: The top co-occurring cardiovascular risk factors were overweight/obese and hypertension (10.8%, n = 17). Of the total 34 risk factors that co-occurred, 30 of them involved being overweight/obese. A six-cluster-solution was obtained, two clusters displayed elevated levels of lifetime and 30-year cardiovascular disease risks. Conclusions: The hierarchical cluster analysis identified that single White males with a family history of heart disease, overweight/obese, hypertensive or diabetes, and occasionally (weekly) consumed red meat, take antihypertensive medication, and hyperlipidemia were considered the higher risk group compared to other subgroups

    Risk Factors Associated With Cardiovascular Disease Among Adult Nevadans

    Get PDF
    © 2021 Tran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective Cardiovascular disease (CVD) remains the number one cause of death in the US and Nevada is ranked 11th highest for CVD mortality. The study sought to examine the association between self-reported risk factors and CVD presence among adult Nevadans, between years 2011 and 2017. Methods This is a cross-sectional, population-based study that utilized the 2011 and 2017 Nevada Behavioral Risk Factor Surveillance System data. Data were analyzed between 2019 and 2020. Results A total of 5,493 and 3,764 subjects in 2011 and 2017, respectively were included. BMI (overweight/obesity) remained the most prevalent CVD risk factor. The second most common CVD risk factor was high cholesterol, followed by hypertension. Compared to females, males were 1.64 times more likely to have reported CVD in 2011, which increased to 1.92 in 2017. Compared to non-smokers, everyday smokers were 1.96 times more likely in 2011 and 3.62 times more likely in 2017. Individuals with high cholesterol status were 2.67 times more likely to have reported CVD compared to those with normal levels in 2011. In 2011, individuals with hypertension were 3.74 times more likely to have reported CVD compared to those who did not have hypertension. This relationship increased its magnitude of risk to 6.18 times more likely in 2017. In 2011, individuals with diabetes were 2.90 times more likely to have reported CVD compared to those without the condition. Conclusions Public health and healthcare providers need to target preventable cardiovascular risk factors and develop recommendations and strategies locally, nationally, and globally

    Pharmacists’ Perspectives on the Use of Telepharmacy in Response to COVID-19 Pandemic in Ho Chi Minh City, Vietnam

    Get PDF
    Introduction: Telepharmacy, the application of information and communication technologies in healthcare services, has been adopted in many countries to provide patients with pharmaceutical care. However, it has yet to be widely used in Vietnam. This study was conducted to assess the current status of use and the factors associated with the willingness to use telepharmacy of pharmacists in Vietnam. Methods: A descriptive cross-sectional study was conducted from February to July 2021; 414 pharmacists were recruited to fill in an online survey. Results: Overall, 86.7% of participants have used telepharmacy application and 87.2% of them were willing to apply telepharmacy in pharmacy practice. According to our multivariate analysis, the level of readiness was associated with positive attitude (odds ratio [OR] = 4.67; 95% confidence interval [CI]: 2.26-9.66), and a good behavior (OR = 11.34; 95% CI: 3.84-33.45). Discussion: Developing a telepharmacy system with appropriate features is essential to meet the requirements of pharmacy practice amid the spread of the COVID-19 pandemic

    Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2015 : the Global Burden of Disease Study 2015

    Get PDF
    Background Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015. Methods For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification. Findings Global HIV incidence reached its peak in 1997, at 3.3 million new infections (95% uncertainty interval [UI] 3.1-3.4 million). Annual incidence has stayed relatively constant at about 2.6 million per year (range 2.5-2.8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38.8 million (95% UI 37.6-40.4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1.8 million deaths (95% UI 1.7-1.9 million) in 2005, to 1.2 million deaths (1.1-1.3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections. Interpretation Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licensePeer reviewe

    College Students’ Perception of Current and Projected 30-Year Cardiovascular Disease Risk Using Cluster Analysis with Internal Validation

    Full text link
    Cardiovascular risk factors in young adults at a national level are less than ideal specifically for hypercholesterolemia, hypertension, and diabetes. Explore college students’ perception of their 30-year cardiovascular disease (CVD) risk using cluster analysis technique with internal validation. This is a descriptive and cross-sectional study. A total of 133 college students, aged 20–36 with no known history of CVD, were recruited and used to perform cluster analysis with internal validation. The mean age of the sample was 24.85 and predominately female (59.5%). The mean score for perception of cardiovascular risk factors was 21.20 ranging from 12 to 34 points on a Likert scale. The mean score for the 30-year CVD risk assessment was 5.23 ranging from 1 to 22%. Five clusters emerged from the cluster analysis. However, two of the clusters, the highest risk with moderate perception and low risk and lowest perception, were identified as areas for potential intervention as there were discrepancies between subjects’ perceived risk and their actual 30-year risk. The national data and literature has indicated a lack of awareness of CVD risk among this population which our study also concurred. Identifying the discrepancies between the perceived and projected CVD risk are useful for researchers and clinicians such as nurses to take the initiative to focus on and begin to intervene in this population to reduce potential adverse events of CVD

    Greening Food Processing Industry in Vietnam: Putting Industrial Ecology to Work

    Get PDF
    The significant contribution to Vietnam's gross domestic product over the years give evidence of the important role of food processing industry in the economic and industrial development of the country. This is even more relevant from now onwards, as it is Vietnam's development strategy to become one of the top agricultural countries in the world by the year 2010. However, it is not difficult to recognize that the rapid growth of food processing industry in Vietnam goes together with environmental deterioration and puts stress on natural resources. So far, most efforts in environmental management of (food processing) industry in Vietnam have mainly been focussing on dealing with wastes and emissions after they have been generated. While to some extent, this end-of-pipe approach helps to reduce or eliminate adverse environmental impacts from the generated wastes and emissions, in most cases, the isolated implementation of this approach shows several disadvantages, shortcomings and inefficiencies. Thus, it should not surprise us that environmental quality in Vietnam is still poor, although the end-of-pipe approach has been implemented from the early 1990s onwards.In order to reduce present and future threats to human health and the environment, industrialized countries have developed and introduced alternative approaches, which can overcome some of the weaknesses of end-of-pipe treatment solutions and are more (economic and environmentally) effective and efficient in reducing the generation of wastes. From existing literature and the experiences of industrialized countries we can clearly envision various advantages of environmental protection strategies that are based on cleaner production, waste exchange (offsite reuse and recycling) or industrial ecology approach instead of end-of-pipe treatment solely. Certainly, each of these approaches can only be applied successfully in some circumstances and is limited in others. Therefore the combination and integration of some or all these approaches is often seen as the best or only strategy to overcome the continuing environmental deterioration. This potential is investigated in this study. The core objective of this research is to analyze and assess the possibilities and the potency for greening food processing industries in Vietnam, based on the combination and integration of existing pollution treatment and prevention approaches. More specifically, this study seeks to fulfil the questions on: how to apply and adapt the existing experiences of industrial ecosystem from highly industrialized Western countries to develop an (agro)-food processing industrial ecosystem with the existing institutions, technological and socio-economic conditions of Vietnam? Whether it is possible to apply these ideas for large stand-alone firms as well as small (household) and medium sized (agro)- food processing companies? What would be core features of a zero waste industrial ecosystem model of food processing industry in Vietnam? Which actors, institutions and relations are crucial or potentially crucial to introduce the proposed model in practice?Dealing with these questions, a methodology to analyze and design pollution prevention models for (agro-food processing) industries, integrating the physical-technological and socio-institutional models is developed. Using various theoretical ideas of cleaner production/waste minimization, waste exchange and industrial ecology, a methodology towards physical-technological models of a zero waste industrial ecosystem is established having four basic steps. The methodology starts with analyzing the material and energy flows that run through the industrial systems and partly end up in wastes, followed by analyzing various possibilities to prevent the generation of wastes in the second step. The third step concentrates on identifying, analyzing and designing potential offsite recovery and reuse options. The last step entails the identification of remaining wastes that need to be treated properly before discharging into the environment. Together, these four steps form a systematic methodology that leads us towards (close to) a physical-technological model for a zero waste industrial ecosystems. In addition, taking into account complex political, economic and social relations between the industrial system and actors outside, the triad-network model developed by Mol (1995) is applied to complement the physical-technological model with an actor and institutional analysis. The roles of actors and the interrelations between them and industrial systems are investigated in three networks: economic, policy and societal network.The applicability of the developed methodology is assessed by applying it on different cases of the Vietnamese food industrial sector. Three case studies (at tapioca producing households in Tra Co Village, a large-scale tapioca processing plant of Tan Chau-Singapore Company, and food processing companies in Bien Hoa 1 IZ) represent differences between: (1) small/household-scale enterprises and large-scale companies; (2) one enterprise and a group of enterprises; (3) a group of enterprises from one industrial sector and a group of enterprises from different industrial sectors (but still within the broad category of agro-food industries); (4) enterprises located within and outside industrial zones, as industrial zones have specific advantages in industrial ecology design.In general, these case studies illustrate that excessive generation of non-products (including reusable/valuable materials, wastes and air pollutant emission) arises due to: inefficient technology, inadequate processing, inadequate onsite and offsite reuse and recycling, cheap natural resources, financial limitations, no strict enforcement and lack of incentives on pollution prevention.Experiences from the three case studies have made clear that failures in current environmental management due to improper performance of the existing actors and institutions can be indicated in the following five points. First, state environmental management authorities, especially provincial DOSTEs, face difficulties of high workload, lack of expertise, and scare resources for monitoring and enforcement. Second, specific regulations and incentives for producers to make their production processes more ecologically sound and to reuse and recycle wastes are completely lacking at the moment. Third, influences from economic agencies do not seem to encourage producers to improve their production efficiencies and environmental performances. Fourth, there is hardly any enduring relation between research institutes and the producers in neither production nor environmental protection. Finally, civil society is not actively involved in environmental issues.Seeking possibilities to overcome the causes of excessive generation of non-products, these case studies have revealed that cleaner production, waste exchanges and ideas of industrial ecology are valuable in greening food processing industry, though the feasible technical options and organizational schemes are different in the different cases. The diversity of industrial system situations in Vietnam in terms of scale, size, industrial sector and location causes a number of dissimilarities in the proposed options and implementations to approach a zero waste (food processing) industrial ecosystems. Therefore, this study concludes that any general or national approach to green food processing industry is doomed to fail in practice if in its operationalization these differences are not taken into account. Though several constraints (in terms of technical dimensions, environmental policy, economic aspects and public participation) hampering the implementation of the proposed physical technological models of zero waste industrial ecosystems were found from the case studies, there also appear several opportunities to overcome these constraints.The possibilities and approaches for greening food processing industry in Vietnam learned by experiences from these case studies can be generalized in a physical-technological model, in which (food processing) industry and agriculture cooperate. This model consists of food processing enterprises and all or some of the following components: other enterprises, which use products from food processing enterprises as raw materials, livestock feed production enterprise, fish culture households, livestock breeding households, composting plant, biogas production plant, agricultural fields and wastewater treatment plant. Though operationalization of this physical-technological model will vary due to the diversity of (food processing) industrial systems, this generalized model is the foundation for governmental authorities, planers, policy makers and environmentalists in reforming existing industrial systems and establishing new industrial systems as well.Though several similarities and dissimilarities arose from the three case studies, it is possible to draw two general conclusions on the proposed methodology. First, the methodology to design a physical-technological model of a zero waste industrial ecosystem following four basic steps proved feasible to apply to any industrial system. Second, the case studies show that without an analysis of actor and institutions, any physical-technological model remains a theoretical possibility at best. An analysis of actors and institutions following a triad-network model proved useful in all studied industrial systems.At last, this study specifies five crucial points, which reflect the very Western ideas of Industrial Ecology Concept when applied in Vietnam. First, the industrial ecology concept has been applied especially in Europe and USA market economics with advanced technological systems, while Vietnam is a less technological development country. Therefore, with the same kind of industrial sector, the application of industrial ecology in Vietnam will differ from European and American ones. Second, in Vietnam, the organizational and institutional structures around industry and industrial systems are in general simpler than what we see in Western countries. This means that an operationalisation of industrial ecology can rely less on all kinds of advanced organizational models. Third, a number of socio-institutional conditions that are crucial for advancing and implementing industrial ecology models in practice as present in advanced industrialized societies are absent or less developed in Vietnam. Thus, developing feasible options that have a high chance to be implemented and succeed in Vietnam will be different from those developed in advanced industrialized countries. Fourth, Vietnam still has a large number of reuse and recycling practices that are not so much motivated by environmental considerations but rather by economic ones. With further development of the economy in Vietnam, these existing recycling and reuse practice might come under pressures and need to be 'protected': that is an active industrial ecology policy needs to be developed to continue these practices. Finally, the large agricultural sector together with the large proportion of the land used for agricultural production opens favorable conditions for agro-industrial ecology models and practices in Vietnam.</p
    corecore