140 research outputs found

    Insulin Solution Stability and Biocompatibility with Materials Used for an Implantable Insulin Delivery Device Using Reverse Phase HPLC Methods

    Get PDF
    open access articleAbstract: Insulin (Humulin® R IU500) has been delivered from an implantable artificial pancreas in diabetic rats and pigs. The artificial pancreas which was implanted in the peritoneum was fabricated from several biocompatible materials such as polycarbonate, stainless steel, polyurethane, titanium and a polyurethane resin. The device also contains a glucose responsive smart gel which controls the di usion of insulin dependent on the surrounding glucose environment. As the insulin reservoir is refillable and in contact with the device materials, assessing its biocompatibility with these various device component materials was conducted. Insulin can undergo chemical degradation mainly via a deamidation reaction on glutamine and asparagine residues rendering its biological hormone functionality. Two Reverse Phase High Performance Liquid Chromatography (RP-HPLC) methods were developed and validated for detection of insulin and degradant Asn A21 desamido insulin (method A) and insulin and degradant Asn B3 desamido insulin (method B). Material biocompatibility studies show that stainless steel and titanium are suitable for an implantable insulin delivery device design over a 31-day period. The use of polycarbonate and polyurethane could be considered if the insulin reservoir in the device was only to remain in the device for less than 11 days after which time there is a loss in cresol which acts in a protective capacity for insulin stability

    Ocular graft-versus-host disease

    Get PDF
    Haemopoietic Stem Cell Transplant (HSCT) is used as a treatment for a number of conditions particularly leukaemias. Following conditioning and HSCT, there is a ‘resetting’ of the immune system, which reconstitutes over a number of months. Graft-versus-Host Disease (GvHD) is a life-threatening complication of HSCT that includes severe, sight-threatening dry eye disease. In GvHD transplanted immune cells mount an immune response against the host. This thesis investigated how the immune cells of the conjunctiva are affected by HSCT and how the ocular surface leukocytes reconstitute. A non-invasive technique, ocular surface impression cytology (OSIC), was used to demonstrate that whilst there was no apparent depletion of innate immune cells in the conjunctiva, there was a marked reduction in the lymphocytes, which gradually reconstituted, returning to normal levels at the 6 months timepoint. Secondly OSIC was used to profile the leukocyte population in a cohort of patients post-HSCT with and without eye disease. In patients with dry eye disease following HSCT, the conjunctiva contained increased CD8+ lymphocytes, macrophages and neutrophils; a pattern that was distinct to that found in patients with dry eye disease following HSCT

    Repairing Peripheral Nerves:Is there a Role for Carbon Nanotubes?

    Get PDF
    Peripheral nerve injury continues to be a major global health problem that can result in debilitating neurological deficits and neuropathic pain. Current state-of-the-art treatment involves reforming the damaged nerve pathway using a nerve autograft. Engineered nerve repair conduits can provide an alternative to the nerve autograft avoiding the inevitable tissue damage caused at the graft donor site. Commercially available nerve repair conduits are currently only considered suitable for repairing small nerve lesions; the design and performance of engineered conduits requires significant improvements to enable their use for repairing larger nerve defects

    The dominant human conjunctival epithelial CD8αβ+ T cell population is maintained with age but the number of CD4+ T cells increases

    Get PDF
    The conjunctiva is a highly specialized ocular mucosal surface that, like other mucosa, houses a number of leukocyte populations. These leukocytes have been implicated in age-related inflammatory diseases such as dry-eye, but their phenotypic characteristics remain largely undetermined. Existing literature provides rudimentary data from predominantly immunohistochemical analyses of tissue sections, prohibiting detailed and longitudinal examination of these cells in health and disease. Using recovered cells from ocular surface impression cytology and flow cytometry, we examined the frequency of leukocyte subsets in human conjunctival epithelium and how this alters with age. Of the total CD45+ leukocyte population within the conjunctival epithelium, 87% [32–99] (median) [range] comprised lymphocytes, with 69% [47–90] identified as CD3 + CD56- T cells. In contrast to peripheral blood, the dominant conjunctival epithelial population was TCRαβ + CD8αβ + (80% [37–100]) with only 10% [0-56%] CD4+ cells. Whilst a significant increase in the CD4+ population was seen with age (r = 0.5; p < 0.01) the CD8+ population remained unchanged, resulting in an increase in the CD4:CD8 ratio (r = 0.5;p < 0.01). IFNγ expression was detectable in 18% [14–48] of conjunctival CD4+ T cells and this was significantly higher among older individuals (<35 years, 7[4–39] vs. >65 years, 43[20–145]; p < 0.05). The elevation of CD4+ cells highlights a potentially important age-related alteration in the conjunctival intra-epithelial leukocyte population, which may account for the vulnerability of the aging ocular surface to disease

    Role of TMPRSS2-ERG Gene Fusion in Negative Regulation of PSMA Expression

    Get PDF
    Prostate specific membrane antigen (PSMA) is overexpressed in prostatic adenocarcinoma (CaP), and its expression is negatively regulated by androgen stimulation. However, it is still unclear which factors are involved in this downregulation. TMPRSS2-ERG fusion is the most common known gene rearrangement in prostate carcinoma. Androgen stimulation can increase expression of the TMPRSS2-ERG fusion in fusion positive prostate cancer cells. The purpose of this investigation is to determine whether PSMA expression can be regulated by the TMPRSS2-ERG gene fusion. We employed two PSMA positive cell lines: VCaP cells, which harbor TMPRSS2-ERG fusion, and LNCaP cells, which lack the fusion. After 24 hours of androgen treatment, TMPRSS2-ERG mRNA level was increased in VCaP cells. PSMA mRNA level was dramatically decreased in VCaP cells, while it only has moderate change in LNCaP cells. Treatment with the androgen antagonist flutamide partially restored PSMA expression in androgen-treated VCaP cells. Knocking down ERG by siRNA in VCaP cells enhances PSMA expression both in the presence and absence of synthetic androgen R1881. Overexpressing TMPRSS2-ERG fusions in LNCaP cells downregulated PSMA both in the presence or absence of R1881, while overexpressing wild type ERG did not. Using PSMA-based luciferase reporter assays, we found TMPRSS2-ERG fusion can inhibit PSMA activity at the transcriptional level. Our data indicated that downregulation of PSMA in androgen-treated VCaP cells appears partially mediated by TMPRSS2-ERG gene fusion

    Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil

    Get PDF
    The carotenoid composition of gari made from biofortified cassava (BG) was compared to that of existing gari of similar appearance but made from white cassava with added red palm oil (RPG). Storage of both yellow gari products was modelled at ambient temperatures typical of tropical areas (19-40 °C) over a 3 month-period at constant relative humidity. Carotenoid content and hence vitamin A activity of the gari products decreased markedly with time and temperature. Trans-β-carotene degradation fitted well the kinetics predicted by the Arrhenius model, in particular for BG. Activation energies for trans-β-carotene were 60.4 and 81.0 kJ.mol−1 for BG and RPG respectively (R2 = 0.998 and 0.997 respectively): hence the minimum energy to cause degradation of trans-β-carotene in gari was lower with BG. Rates of degradation of 9-cis β-carotene in gari were of the same order as with trans-β-carotene. Although the initial content of trans-β-carotene was twice as high in the BG compared to RPG, trans-β-carotene in BG degraded much faster. Results showed that the average shelf life at ambient temperature for BG was significantly shorter than for RPG and therefore carotenoids in BG were less stable than in RPG

    Physical losses could partially explain modest carotenoid retention in dried food products from biofortified cassava

    Get PDF
    Gari, a fermented and dried semolina made from cassava, is one of the most common foods in West Africa. Recently introduced biofortified yellow cassava containing provitamin A carotenoids could help tackle vitamin A deficiency prevalent in those areas. However there are concerns because of the low retention of carotenoids during gari processing compared to other processes (e.g. boiling). The aim of the study was to assess the levels of true retention in trans–β-carotene during gari processing and investigate the causes of low retention. Influence of processing step, processor (3 commercial processors) and variety (TMS 01/ 1371; 01/1368 and 01/1412) were assessed. It was shown that low true retention (46% on average) during gari processing may be explained by not only chemical losses (i.e. due to roasting temperature) but also by physical losses (i.e. due to leaching of carotenoids in discarded liquids): true retention in the liquid lost from grating negatively correlated with true retention retained in the mash (R = -0.914). Moreover, true retention followed the same pattern as lost water at the different processing steps (i.e. for the commercial processors). Variety had a significant influence on true retention, carotenoid content, and trans-cis isomerisation but the processor type had little effect. It is the first time that the importance of physical carotenoid losses was demonstrated during processing of biofortified crops

    Urinary volatile organic compounds for the detection of prostate cancer

    Get PDF
    © 2015 Khalid et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The aim of this work was to investigate volatile organic compounds (VOCs) emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA) level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59) and cancer-free controls (n = 43), on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF) and Linear Discriminant Analysis (LDA) classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients
    corecore