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Abstract
The aim of this work was to investigate volatile organic compounds (VOCs) emanating from

urine samples to determine whether they can be used to classify samples into those from

prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal

ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA)

level or abnormal findings on digital rectal examination. Urine samples were collected from

patients with prostate cancer (n = 59) and cancer-free controls (n = 43), on the day of their

biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were

extracted using solid-phase micro-extraction and analysed by gas chromatography/mass

spectrometry. Classifiers were developed using Random Forest (RF) and Linear Discrimi-

nant Analysis (LDA) classification techniques. PSA alone had an accuracy of 62–64% in

these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octa-

none, and 2-octanone, was marginally more accurate 63–65%. When combined, PSA level

and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respec-

tively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%,

using RF and LDA, respectively. Results from VOC profiling of urine headspace are encour-

aging and suggest that there are other metabolomic avenues worth exploring which could

help improve the stratification of men at risk of prostate cancer. This study also adds to our

knowledge on the profile of compounds found in basified urine, from controls and cancer

patients, which is useful information for future studies comparing the urine from patients

with other disease states.

Introduction
Prostate cancer is the second most prevalent malignancy affecting men worldwide, and yet
there is no reliable screening tool. Over 40,000 cases are detected in the UK each year [1], usu-
ally by a combination of digital rectal examination (DRE), serum prostate specific antigen
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(PSA) measurements and followed by trans-rectal ultrasound-guided (TRUS) prostate biopsy.
Prostate cancer is the second most common cause of death from malignancy in the UK [2].

Serum PSA, at a cut-off of 4 ng/ml, is part of an FDA-approved screening programme in the
USA [3]. However, PSA testing is not used for screening elsewhere because of its low sensitiv-
ity, estimated to be 21% for detecting any prostate cancer and 51% for detecting high-grade
cancers (Gleason�8) with PSA cut-off values of 4.0 ng/ml [4]. The false negative rate is up to
20% at that cut-off [5, 6]. In screening, only 25 to 30% of men with elevated PSA levels between
4–10 ng/ml have prostate cancer [7, 8].

Screening based on PSA levels has led to anxiety for many men, who do not have prostate
cancer and the over-diagnosis of slow-growing cancers that were unlikely to pose a significant
risk to patients. Two recent large screening trials found no significant decrease in mortality
from prostate cancer following PSA-based screening tests [9, 10].

Other potential blood and urine based biomarkers for prostate cancer include: prostate can-
cer antigen 3 [PCA3] [11], intracellular PSA [12], PSA derivatives [13], early prostate cancer
antigen 2 [14], annexin A3 [15], the fusion gene TMPRSS2:ERG [16, 17], human kallikrein 2
[18] and the Engrailed-2 protein (EN2) [19, 20]. However, none of these are used for screening
[21, 22]. Sarcosine was proposed as a biomarker for metastatic prostate cancer [23], but this
finding has not been replicated [24–26].

Several studies have reported that dogs can be trained to detect skin, bladder, lung, breast
and ovarian cancer from breath, tissue and urine samples [27–30]. Cornu et al trained a Belgian
Mallinois to identify prostate cancer from control urine samples with a sensitivity and specific-
ity of 91% [31]. Elliker et al trained two dogs to identify prostate cancer from control urine
samples, however, they were unable to discriminate cancers from controls when presented
with new samples in a double-blind test [32]. Taverna et al collected samples from 362 prostate
cancer patients and 540 controls: 2 dogs were tested, dog 1 performed best with a sensitivity of
100% and specificity of 98.7% and dog 2 achieved sensitivity of 98.6% and specificity of 97.6%
[33].

Following the proof of concept studies in dogs, researchers have also tested electronic nose
technology to discriminate the odour of urine from patients with prostate cancer and controls,
achieving a sensitivity of 71 to 82% and specificity of 67 to 93% [34, 35].

The odour signature of urine is produced by substances known as volatile organic com-
pounds (VOCs), which can be separated and identified by gas chromatography/mass spectros-
copy (GC/MS). In the present study, we have compared the VOC profiles of urine headspace
from 102 patients with urological symptoms, 59 of whom had prostate cancer and 43 who did
not. To the best of our knowledge, no extensive work has been published on this to date.

Materials and Methods
Ethical approval for the study was obtained from the Wiltshire Research Ethics Committee
(REC reference number 08/H0104/63; protocol SU/2008/2901, version 3 approved 09/06/
2009) with R&D approval from the University Hospitals Bristol NHS Foundation Trust from
where participants were recruited over a 13-month period. Each participant reviewed an infor-
mation sheet and gave written consent. All participants were men who were referred for a
TRUS guided prostate biopsy because of an elevated PSA level or abnormal findings on DRE,
secondary to other urological problems (see S1 Table).

Urine samples were collected in universal bottles prior to the patients TRUS prostate biopsy
(10–12 cores) and samples were classified as prostate cancer or controls after pathological
examination of the biopsy specimens. Urinalysis and specific gravity were performed on all
samples under the SOP of the urology clinic. Prostate specific antigen levels were measured at
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the Bristol Royal Infirmary using Immulite 2000 PSA assay and Immulite 2000 analyser (Sie-
mens Medical Solutions Diagnostics, New York, USA). The demographics for the patient
groups studied are given in Table 1.

The comorbidities and medication of patients are included in S1 Table along with the reason
for patient referral for a prostate biopsy. Patients were excluded if they had a history of urothe-
lial carcinoma or other known malignancies, a urinary tract infection, or a urinary catheter in
situ. There were no exclusion criteria regarding ethnicity of the patient, the consumption of
alcohol, tobacco, drugs, or food. Aliquots of fresh urine, 0.75 ml, were transferred to septum
topped headspace vials (Sigma Aldrich, Dorset, UK) and were frozen at -20°C until analysis.
There is no evidence that storage at -20°C has a negative influence on the presence of VOCs in
headspace gases from urine samples [36, 37]. In addition, samples were collected, stored and
analysed randomly. Therefore, any variation due to sample storage would have a similar effect
on both cancer and control groups studied here.

Prior to urine headspace analysis each sample was defrosted by immersing the vial in a
water bath at 60°C for 30 seconds. One single aliquot of urine sample per patient was used for
VOC analysis. Thereafter, each sample was treated with an equal volume (0.75 ml) of sodium
hydroxide (1M; Fisher Scientific, Leicestershire, UK). The addition of base, acid and salt are
commonly used methods for improving the detection of VOCs from urine samples [36–39]. In
general, these methods increase the concentration of VOCs in the headspace by increasing the
ionic strength of the sample. In this study, exactly the same treatment method was applied to
urine samples from patients with cancer and controls. Therefore, we expect the effect of
sodium hydroxide to be similar in both groups. The mixture was equilibrated at 60°C in a
water bath for 30 minutes prior to, and during, extraction of VOCs from the headspace with a
solid-phase micro-extraction (SPME) fibre.

The SPME fibre was 85 μm thick and consisted of carboxen/ polydimethylsiloxane (Sigma
Aldrich, Dorset, UK). The fibre was exposed to the headspace above the urine mixture for 20
minutes and following extraction the VOCs were analysed by GC/MS (Perkin Elmer Clarus
500 quadrupole, Beaconsfield, UK). The VOCs were thermally desorbed from the fibre at
220°C in the injection port of the GC/MS for 5 minutes. Injection was made in splitless mode
and a split of 50 ml/min was turned on two minutes into the run.

Helium carrier gas of 99.996% purity (BOC, Guildford, UK) was passed through a helium
purification system, Excelasorb™ (Supelco, Poole, UK) at 1 ml min-1. The GC column was a 60
metre long Zebron ZB-624 capillary column with an inner diameter of 0.25 mm and a film
thickness of 1.4 μm, specifically designed for the separation of VOCs (Phenomenex, Maccles-
field, UK). Its composition consisted of 94% dimethyl polysiloxane and 6% cyanopropyl-
phenyl.

The GC/MS temperature program of the run was as follows: initial oven temperature was
held at 40°C for 2 minutes then the temperature was ramped up at a rate of 5°C/min to 220°C,
with a 4 minute hold at this temperature to give a total run time of 42 minutes. The mass spec-
trometer was run in electron impact (EI) ionization mode, scanning the mass ion range 10–300
at 0.05 scan /sec. A 4 minute solvent delay was used at the start of the run.

Table 1. Demographics for study participants with and without prostate cancer.

N Age range in years (median) PSA range (ng/mL) (median) No. of smokers (%)

Controls 43 41–81 (63) 0.8–30 (6.2) 7 (16)

Prostate cancer 59 50–88 (69) 3.4–647 (10.2) 10 (17)

doi:10.1371/journal.pone.0143283.t001
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Data processing
The GC-MS data was processed using a pipeline involving the Automated Mass Spectral
Deconvolution and Identification System software (AMDIS, Version 2.71, 2012), the NIST
mass spectral library (version 2.0, 2011) and the R (R core team, 2013) package Metab [40].
AMDIS and NIST were used to build a VOC library containing 197 metabolites present in the
urine samples analysed in this study (S2 Table). A forward and reverse match of 800/1000 and
above was used for assigning tentative compound identifications. Using this VOC library,
AMDIS was then applied for deconvoluting GC-MS chromatograms and identifying metabo-
lites. The report generated by AMDIS was further processed by Metab in order to confirm the
identity of metabolites and recalculate their relative abundances based on the intensity of a spe-
cific ion mass fragment per metabolite. In order to develop robust parsimonious statistical
models, those compounds found to be present in fewer than 20% of the patients in both groups
(i.e. relatively rare compounds) or present in more than 90% of the patients in both groups (i.e.
relatively common volatiles) were removed from the data set before statistical modelling.

Statistical Analysis
The VOC profiles of every patient were converted to binary data based on the presence and
absence of metabolites. Then, four different approaches (Table 2) were applied for feature
selection prior to model building.

The features, or VOCs, selected by at least one feature selection approach were used for
developing classifiers using both Fisher’s Linear Discriminant Analysis [43] and Breiman’s
Random Forest [42] decision tree. These classifiers were evaluated as two distinct approaches.
This process was then repeated utilizing VOCs selected by at least one feature selection
approach and the PSA levels of each patient to see how results compare to that of VOCs alone
and the PSA test alone.

It is well-known that model building and model testing on the same data can produce biased
results and can suffer from over fitting with models describing chance idiosyncratic sample fea-
tures rather than real trends. This sample description approach is prone to inflated and opti-
mistic measures of model accuracy, and much lower accuracy rates may be seen when the
model is applied to fresh data [44, 45]. To overcome these potential flaws, model validation
using repeated 10-fold cross-validation as described by Delen [46] was implemented. Repeated
double cross-validation as described, implemented and strongly recommended by Filzmoser
and colleagues [45], and by Anderssen and colleagues [44], was also used for model building
and model assessment. Fig 1 gives a schematic overview of repeated 10-fold cross-validation
and repeated double cross-validation. The cross-validation strategy was based on 30 repeats
and ten-folds. The double cross-validation strategy also had 30 repeats of the outer loop
(model evaluation loop), with calibration and test data based on 3 folds. The inner loop (the
model tuning loop) used training and test data based on 10 folds and with 30 repeats.

Table 2. Approaches and R packages applied for feature selection prior to statistical modelling.

Description R package::
function

Reference

•Wrapper approach built around random forest Boruta::Boruta [41]

•Linear discriminant analysis with stepwise feature selection caret::stepLDA [42]

•Backwards selection of predictors based on predictor importance
ranking

caret::rfe [42]

•Wrapper approach built around bagging tree caret::treebagFuncs [42]

doi:10.1371/journal.pone.0143283.t002
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It is instructive to demonstrate a class structure over any chance relationship. Based on the
work of Ojala [47], the two cross-validation schemes were repeated on the data but with a
Monte Carlo random permutation of class labels (prostate cancer, control) in each repeat. This
permutation approach provides a reference level of chance agreement for the modelling pro-
cess, which is needed to help quantify the effects captured by cross-validated models derived
on authentic data. All modelling techniques and model validations were applied using the R
package Caret [42].

Results
The diagnostic capability of using PSA levels alone for this patient cohort was assessed. Using
repeated 10-fold cross-validation, patients could be classified into prostate cancer and cancer-
free groups based on their PSA levels with mean accuracies of 62% and 64%, using Random
Forest and Linear Discriminant Analysis, respectively (Table 3).

Using repeated double cross-validation, the mean accuracies fell to 61 and 63%, using Ran-
dom Forest and Linear Discriminant Analysis, respectively (Table 4).

Based on the presence or absence of VOCs alone, urine samples could be classified with a
mean accuracy of 66% with repeated 10-fold cross-validation (Table 5). Source data appear in
S3 Table.

Using repeated double cross-validation, the mean accuracies fell to 65 and 63%, using Ran-
dom Forest and Linear Discriminant Analysis, respectively (Table 6).

Fig 1. The pipeline of the validation techniques known as repeated 10 fold cross validation and repeated double cross validation. AMonte-Carlo
variation of each technique is achieved by randomising the labels of the testing samples.

doi:10.1371/journal.pone.0143283.g001
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Given that repeated double cross-validation is a much more rigorous technique of cross-val-
idation than repeated 10-fold cross-validation, a reduction in test performance was expected.
With a Monte Carlo random permutation of class labels, the mean accuracies fell to 50% using
both modelling techniques. Therefore, the classification of samples based on the presence or
absence of VOCs is somewhat better than what can be expected by chance alone. The final set
of features selected and used to develop classifiers by both Fisher’s Linear Discriminant Analy-
sis and Breiman’s Random Forest decision tree, included 2,6-dimethyl-7-octen-2-ol, pentanal,
3-octanone, and 2-octanone. Except for pentanal, all of these compounds were down-regulated
and/or less frequently present in the urine samples from prostate cancer patients. The classifi-
cation of patients into cancer and control groups based on these features in combination with
PSA levels are summarised in Tables 7 and 8.

Using repeated 10-fold cross-validation, patients could be classified into prostate cancer and
cancer-free groups with mean accuracies of 74% and 65%, using Random Forest and Linear
Discriminant Analysis, respectively. With a Monte Carlo random permutation of class labels,
the mean accuracies fell to 56% and 48%, using Random Forest and Linear Discriminant Anal-
ysis, respectively. Hence the results obtained by the two cross-validation schemes were superior
to those that could be expected by chance. Using repeated double cross-validation, patients
could be classified with mean accuracies of 71% and 65%, using Random Forest and Linear
Discriminant Analysis classification techniques, respectively. Fig 2 presents the receiver operat-
ing characteristic curve for the double repeated cross-validation analysis. The Monte Carlo ran-
dom permutation of class labels reduced the diagnostic performance of the models to give
mean test accuracies of 51 and 50% by random forest and linear discriminant analysis, respec-
tively. These latter Monte Carlo accuracies closely align with the expected classification accu-
racy of 52% under chance agreement with fixed marginal frequencies and indicate that the
classification rate in the authentic models (71% and 65%) is not an artefact of the modelling
process.

Discussion
For the first time, the VOC profiles of urinary headspace were studied from men with a suspi-
cion of prostate cancer investigated by TRUS-guided needle prostate biopsy to confirm, or rule
out, a diagnosis of prostate cancer. The objective of this reported work was to assess if the VOC
profiles from urine headspace can help supplement current clinical tests to improve the stratifi-
cation of men at risk of prostate cancer and, thereby, help to reduce the number of patients
subjected to unnecessary needle biopsy.

There have been limited mass spectrometry studies published on volatile analyses of urine
for prostate cancer detection. In a pilot study by our group we assessed the VOC profiles of

Table 3. Accuracy results of PSA testing for prostate cancer assessed with repeated 10 fold cross validation of Random Forest and Linear Dis-
criminant Analysis (LDA) models.

Repeated 10 fold cross validation

Model Min. 1st.Qu. Median Mean 3rd.Qu. Max.

Random Forest 0.10 0.50 0.60 0.62 0.70 1.00

LDA 0.27 0.56 0.64 0.64 0.70 1.00

Monte-Carlo 10 fold cross validation

Model Min. 1st.Qu. Median Mean 3rd.Qu. Max.

Random Forest 0.10 0.36 0.40 0.43 0.50 0.73

LDA 0.33 0.55 0.60 0.58 0.60 0.80

doi:10.1371/journal.pone.0143283.t003
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urine from 24 asymptomatic men and 13 men with prostate cancer [48]. 21 VOCs were found
to be positively associated with urine from prostate cancer patients. Similarity coefficients were
calculated for each of the samples based on the presence or absence of these compounds in
both groups. When applied to a multivariate discriminant analysis rule, these similarity coeffi-
cients allowed for discrimination of cases with 92.3% sensitivity and 96.3% specificity.
Although promising, that study was too small to draw any robust conclusions and the use of
asymptomatic men as controls meant that it did little to address one of the present clinical
challenges of distinguishing patients with prostate cancer from those with non-malignant uro-
logical problems that often result in a raised PSA level; in the earlier study only one of the con-
trols have a raised PSA.

Peng et al., 2010 tested the exhaled VOC profiles of healthy controls (n = 22) and patients
with lung (n = 30), breast (n = 22), colorectal (n = 26), and prostate cancer (n = 18) [49]. The
authors found that toluene, 2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile, p-xylene,
and 2,2-dimethyl-decane showed no overlap in abundance between the healthy controls and
patients with prostate cancer. However, they excluded compounds present in<80% of both
cancer and control groups from the analysis. This is likely to have resulted in the loss of com-
pounds with better discriminating power than those reported above which gave rise to close
clusters in compound abundances between the prostate cancer and control groups. In addition,
Peng et al. used a relatively small study size and compared cancerous groups to healthy cases,
which are not suitable controls. A study published in Nature generated significant interest in
the molecule sarcosine as a potential biomarker of aggressive prostate cancers [23]. Signifi-
cantly higher levels of sarcosine were reported in both urine sediments and supernatants from
biopsy-positive prostate cancer patients (n = 44) compared to biopsy-negative controls

Table 4. Accuracy results of PSA testing for prostate cancer assessed using repeated double cross validation of Random Forest and Linear Dis-
criminant Analysis (LDA) models.

Repeated double cross validation

Accuracy Sensitivity Specificity

Model Mean Min Median Max Mean Min Median Max Mean Min Median Max

Random Forest 0.61 0.43 0.61 0.74 0.66 0.35 0.65 0.90 0.53 0.21 0.57 0.71

LDA 0.63 0.53 0.63 0.74 0.87 0.58 0.89 1.00 0.31 0.07 0.29 0.71

Monte-Carlo repeated double cross validation

Accuracy Sensitivity Specificity

Model Mean Min Median Max Mean Min Median Max Mean Min Median Max

Random Forest 0.50 0.29 0.50 0.68 0.58 0.26 0.57 0.95 0.41 0.08 0.43 0.69

LDA 0.51 0.31 0.51 0.71 0.81 0.43 0.81 1.00 0.22 0.00 0.21 0.53

doi:10.1371/journal.pone.0143283.t004

Table 5. Accuracy results of repeated 10 fold cross validation of the Random Forest and Linear Discriminant Analysis (LDA) models built to clas-
sify urine samples from patients with prostate cancer and cancer-free controls based on the presence or absence of VOCs.

Repeated 10 fold cross validation

Model Min. 1st.Qu. Median Mean 3rd.Qu. Max.

Random Forest 0.30 0.60 0.70 0.66 0.73 1.00

LDA 0.27 0.59 0.67 0.66 0.73 1.00

Monte-Carlo 10 fold cross validation

Model Min. 1st.Qu. Median Mean 3rd.Qu. Max.

Random Forest 0.00 0.45 0.50 0.51 0.60 0.73

LDA 0.10 0.44 0.50 0.50 0.60 0.70

doi:10.1371/journal.pone.0143283.t005
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(n = 51). However, the predictive value of sarcosine was modest with an overall area under the
curve (AUC) of the receiver operating characteristic (ROC) curve of 0.71 for urine sediments
and 0.67 for supernatants. Further studies looking to validate this work proved disappointing
[24–26]. On identifying the limited capabilities of sarcosine, Wu and co-workers went on to
investigate other metabolomic markers in urine from 20 patients with prostate cancer, 8
patients with benign prostatic hypertrophy, and 20 healthy men [26]. They used microwave-
assisted derivatization prior to GC/MS analyses for the detection of higher molecular weight
compounds such as amino acids, organic acids, carbohydrates and fatty acids. Higher levels of
the organic acids: dihydroxybutanoic acid and xylonic acid and lower levels of pyrimidine and
the carbohydrates: xylopyranose and ribofuranoside were observed in the prostate cancer
group. A diagnostic model, based on these 5 marker metabolites, reported an AUC value of
0.825 of the ROC curve. Again the main limitation of this work is the lack of adequate and suit-
able controls. Much further work is required in large, multi-centre studies by independent
research groups if robust biomarkers for prostate cancer are ever to be found considering the
past failures to corroborate initially “promising” biomarkers, with PSA and sarcosine being
prime examples. In reality the majority of novel biomarkers reported in the literature fail the
next hurdle to validate their potential for the diagnosis or management of cancer. Prensner
et al., listed five common reasons for this: the lack of a robust test protocol for reproducibility,
a biased comparison of groups in the study (case versus controls), undefined or inappropriate
clinical role of the biomarker, a statistically underpowered study size, and inappropriate statis-
tical analysis, including over fitting of the data [50]. Until results can be validated in separate
trials, suitable cross-validation of the statistical analysis should be applied as a precautionary
approach to estimate the predictive accuracy (and hence validity) of the biomarker(s) on new

Table 6. Accuracy results of repeated double cross validation of the Random Forest and Linear Discriminant Analysis (LDA) models built to clas-
sify urine samples from patients with prostate cancer and cancer-free controls based on the presence or absence of VOCs.

Repeated double cross validation

Accuracy Sensitivity Specificity

Model Mean Min Median Max Mean Min Median Max Mean Min Median Max

Random Forest 0.65 0.47 0.66 0.79 0.74 0.37 0.75 0.90 0.53 0.13 0.53 0.86

LDA 0.63 0.44 0.64 0.76 0.75 0.35 0.77 1.00 0.47 0.13 0.50 0.79

Monte-Carlo repeated double cross validation

Accuracy Sensitivity Specificity

Model Mean Min Median Max Mean Min Median Max Mean Min Median Max

Random Forest 0.50 0.30 0.51 0.64 0.63 0.25 0.64 0.93 0.37 0.07 0.37 0.72

LDA 0.50 0.26 0.50 0.67 0.65 0.25 0.67 0.92 0.35 0.05 0.33 0.76

doi:10.1371/journal.pone.0143283.t006

Table 7. Accuracy results of repeated 10 fold cross validation of the Random Forest and Linear Discriminant Analysis (LDA) models built to clas-
sify patients with prostate cancer and cancer-free controls based on blood PSA levels and urinary VOCs.

Repeated 10 fold cross validation (%)

Model Min. 1st.Qu. Median Mean 3rd.Qu. Max.

Random Forest 20.00 66.67 72.73 73.69 80.00 100.00

LDA 22.22 58.89 63.64 64.85 72.73 100.00

Monte-Carlo 10 fold cross validation (%)

Model Min. 1st.Qu. Median Mean 3rd.Qu. Max.

Random Forest 10.00 45.45 55.56 55.79 66.67 90.91

LDA 10.00 40.00 50.00 48.00 60.00 88.89

doi:10.1371/journal.pone.0143283.t007
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cases drawn from the same patient groups. Rosenberg et al., have introduced the application of
a double cross-validation scheme on proteomics data from human prostate and colon tumours
[51]. In this current study, the classification models were validated using repeated and repeated
double cross-validation. Nevertheless, the results reported here should still be treated with cau-
tion given this is a small study that could be unduly affected by random or non-random per-
mutations and confounding factors. The VOC model was based on the presence or absence of
four volatile compounds: 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone.
Except for pentanal, all of these compounds were down-regulated and/or less frequently pres-
ent in the urine samples from prostate cancer patients. The production of aldehydes has been
linked with cancer and inflammatory conditions via the excessive production of reactive oxy-
gen species (ROS) known to induce lipid peroxidation [52]. This may explain the higher inci-
dence of pentanal detected in the urine samples of patients with prostate cancer. In agreement
with our findings, other metabolomic studies have also commonly observed a trend of
decreased production (down-regulation) of certain metabolites in cancer groups compared to
control groups [53, 54]. A possible explanation for this trend may be that cancerous cells are
utilising some of these metabolites to meet demands for increased energy consumption and
converting these compounds to other substances that could not be detected by GC/MS. S2
Table lists all the compounds found which adds to our knowledge of compounds found in basi-
fied urine from urological controls and cancer patients. This will be useful for comparisons in
other studies measuring volatiles from urine.

The results we report here on the discriminating capabilities of urine VOCs are somewhat
inconclusive, but they mirror the findings of other groups that have tested potential biomarkers
in urine and blood (PCA3 [55], multiplex urine RNA based biomarkers [56], and the Prostate
Health Index based on PSA and its derivative [–2]proPSA and %fPSA [57, 58]) for the discrim-
ination of prostate cancer patients from controls. It is very important that the study cohorts
accurately reflect the specific patient population for which the biomarker test is intended.
Therefore, we recruited controls from the urology clinic on the day of their prostate biopsy,
who were being followed up for symptoms suspicious of prostate cancer. Indeed, all patients in
this study had either elevated PSA levels or abnormal findings on a digital rectal examination.
Based on PSA levels alone, patients could be classified with mean accuracies of 61% and 63%
using RF and LDA classification techniques, respectively, with repeated double cross-valida-
tion. It is clinically challenging to differentiate these non-cancerous patients with urological
symptoms from those with prostate cancer. It was also challenging to discriminate between
these two groups based on urinary VOCs as this gave similar classification results to that
obtained with PSA levels. Based on the presence or absence of four compounds, urine sample

Table 8. Accuracy results of repeated double cross validation of the Random Forest and Linear Discriminant Analysis (LDA) models built to clas-
sify patients with prostate cancer and cancer-free controls based on blood PSA levels and urinary VOCs.

Repeated double cross validation (%)

Accuracy Sensitivity Specificity

Model Mean Min Median Max Mean Min Median Max Mean Min Median Max

Random Forest 70.88 52.94 70.59 82.86 80.16 60.00 80.00 100.00 58.23 28.57 57.14 85.71

LDA 65.09 47.06 64.71 80.00 75.56 45.00 75.00 100.00 50.80 14.29 50.00 85.71

Monte-Carlo repeated double cross validation (%)

Accuracy Sensitivity Specificity

Model Mean Min Median Max Mean Min Median Max Mean Min Median Max

Random Forest 50.52 26.47 50.00 73.53 64.09 35.71 64.29 94.74 36.72 5.88 37.50 64.29

LDA 49.89 32.35 50.00 72.73 64.70 38.46 65.00 90.00 34.70 0.00 33.33 81.82

doi:10.1371/journal.pone.0143283.t008
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were classified with mean accuracies of 65% and 63%, using RF and LDA classification tech-
niques, respectively, with repeated double cross-validation. Combining PSA levels with urinary
VOCs, only gave a marginal improvement in the classification of patients, reporting mean
accuracies of 71% and 65% using RF and LDA classification techniques, respectively, with
repeated double cross-validation.

Fig 2. Receiver operating characteristic curve (ROC) for the random forest (RF) and linear discriminant analysis (LDA) models built using repeated
double cross-validation to classify patients with prostate cancer and cancer-free controls based on PSA levels and VOCs in urine headspace.

doi:10.1371/journal.pone.0143283.g002
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These two techniques were chosen because of their complementary nature i.e. LDA is a sin-
gle classifier which uses a linear decision boundary and has the virtue of simplicity when it
works, whereas, and in contrast, the Random Forest is a powerful ensemble approach which
may do well when complex interactions may be needed to obtain good predictive accuracy. In
this current study, the classification models were validated using repeated and repeated double
cross-validation. Repeated double cross-validation (rdCV) is a systematic procedure which
repeatedly randomly splits the data into a calibration sample for model development and into a
holdout sample for model evaluation, and provides a realistic estimation of model accuracy
when applied to new observations drawn from the same homogenous population. Neverthe-
less, the results reported here should still be treated with caution given this is a small study
which may not adequately capture the diversity in the population and which may be subject to
confounding factors.

A multiplatform method that combines volatile analyses with analyses of non-volatile com-
pounds (using nuclear magnetic resonance spectroscopy or high-performance liquid chroma-
tography/mass spectrometry based approaches) will help achieve a more comprehensive
understanding of the metabolic characteristics of prostate cancer and may help clarify the met-
abolic pathways associated with aggressive forms of cancer. The current data indicate that
VOC analyses may be used in addition to PSA testing in finding patients with prostate cancer.
Future work should consider methods to optimise the results and explore other means of
extracting VOCs from urine samples such as derivatization.

A limitation of this study was that urine samples were obtained at different times of the day,
therefore varying in concentration. The collection of first pass urine would have minimised
urine dilution and differences in urine concentration between study participants, however this
would have also hindered the collection of samples. Future studies of this kind should make
effort to measure the levels of urinary creatinine or urine osmolality to determine the degree of
urine dilution. This can help define an acceptable range of urine concentrations for the analysis
of headspace VOCs or provide a means to correct for urine dilution.

It is also important to note that the biopsy result cannot exclude the presence of prostate
cancer completely in these patients, but can only confirm that there was no cancer found in the
tissue samples taken. Therefore a possibility still remains that some patients were incorrectly
categorized as negative for prostate cancer and this could have impacted negatively on the diag-
nostic capability of the models.

Biomarker research normally focuses on early disease diagnosis but it has been argued that,
for prostate cancer, the greatest unmet clinical need is to distinguish low-risk or slow-growing
cancers from the aggressive ones [50]. The identification and validation of prognostic and pre-
dictive biomarkers will help reduce unnecessary interventions that may cause more harm than
good, monitor progression during “watchful waiting” and target treatment for those patients
who are most likely to benefit [50]. There needs to be more work undertaken to lead to an
improved method for identifying aggressive tumours. A much larger study is warranted to
investigate this.

Conclusion
Urology patients with elevated PSA levels would normally undergo a TRUS-guided needle
prostate biopsy to confirm or exclude a diagnosis of prostate cancer. In the population we stud-
ied, the classification of patients with urine VOC testing was comparable to PSA level testing.
Combining PSA levels with urinary VOCs resulted in a marginal improvement in test perfor-
mance. These results are encouraging and suggest that there are other metabolomic avenues
worth exploring which could help improve the stratification of men at risk of prostate cancer
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requiring follow-up. This study also adds to our knowledge of compounds found in alkaline
urine, from controls and cancer patients, which will be useful for comparisons in other studies
investigating volatiles from urine.
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