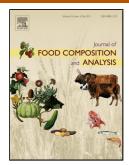
Accepted Manuscript

Title: Original Research Article: Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil

Author: Aurelie Bechoff Ugo Chijioke Keith I. Tomlins Pesila Govinden Paul Ilona Andrew Westby Erick Boy

PII: DOI: Reference: S0889-1575(15)00143-X http://dx.doi.org/doi:10.1016/j.jfca.2015.06.002 YJFCA 2598

To appear in:


 Received date:
 29-10-2014

 Revised date:
 1-6-2015

 Accepted date:
 8-6-2015

Please cite this article as: Bechoff, A., Chijioke, U., Tomlins, K. I., Govinden, P., Ilona, P., Westby, A., and Boy, E., Original Research Article: Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil, *Journal of Food Composition and Analysis* (2015), http://dx.doi.org/10.1016/j.jfca.2015.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

*Manuscript

ACCEPTED MANUSCRIPT

1	Original Research Article: Carotenoid stability during storage of yellow	
2	gari made from biofortified cassava or with palm oil	
3		
4	Aurelie Bechoff ^{a*} , Ugo Chijioke ^b , Keith I. Tomlins ^a , Pesila Govinden ^a ,	
5	Paul Ilona ^c , Andrew Westby ^a , Erick Boy ^d	
6	^a Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent,	
7	ME4 4TB, United Kingdom	
8	^b National Root Crop Research Institute, Umudike, PMB 7006, Umuahia, Abia State, Nigeria.	
9	^c HarvestPlus Nigeria, c/o International Institute of Tropical Agriculture (IITA) PMB 5320, Ibadan,	
10	Oyo State, Nigeria	
11	^d HarvestPlus Headquarters, c/o IFPRI, 2033 K Street, NW, Washington, DC 20006-1002, USA	
12	*Corresponding author. Tel: +44 (0)1634883071; fax +44 (0)1634 88 3386. E-mail address:	
13	<u>a.bechoff@gre.ac.uk</u> (A. Bechoff).	Field Code Changed
14		
15	ABSTRACT	

The carotenoid composition of gari made from biofortified cassava (BG) was compared to 16 17 that of existing gari of similar appearance but made from white cassava with added red palm 18 oil (RPG). Storage of both yellow gari products was modelled at ambient temperatures typical of tropical areas (19-40°C) over a 3 month-period at constant relative humidity. 19 20 Carotenoid content and hence vitamin A activity of the gari products decreased markedly 21 with time and temperature. Trans- β -carotene degradation fitted well the kinetics predicted by 22 the Arrhenius model, in particular for BG. Activation energies for trans-\beta-carotene were 63.160.4 and 82.381.0 kJ.mol⁻¹ for BG and RPG respectively (R² = 0.998 and 0.988-997) 23 respectively): hence the minimum energy to cause degradation of trans- β -carotene in gari was 24 lower with BG. Rates of degradation of 9-cis β-carotene in gari were of the same order as 25 Page 1 of 26

Page 1 of 37

26	with trans- β -carotene. Although the initial content of trans- β -carotene was twice as high in	
27	the BG compared to RPG, trans- β -carotene in BG degraded much faster. Results showed that	
28	the average shelf life at ambient temperature for BG was significantly shorter than for RPG	
29	and therefore carotenoids in BG were less stable than in RPG.	
30		
31	Key-words: carotenoid degradation, biofortified cassava, gari, palm oil, storage, temperature,	
32 33	model prediction, vitamin A deficiency, nutritional impact, food composition	
34	Abbreviations: BG: gari from biofortified yellow cassava; RPG: gari from white cassava with added palm oil.	
35	FW: fresh weight basis; DW: dry weight basis; R: retention; RAE: Retinol Activity Equivalent; EAR: Estimated	
36	average requirement; VAD: vitamin A deficiency; pVACs: provitamin A carotenoids	
37		
38	1. Introduction	
39	Cassava (Manihot esculenta Crantz), a tropical root crop, is a starch staple and an important	Formatted: Font: Italic
39 40	Cassava <u>(Manihot esculenta Crantz)</u> , a tropical root crop, is a starch staple and an important crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3	Formatted: Font: Italic
		Formatted: Font: Italic
40	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3	Formatted: Font: Italic
40 41	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3 days) of the crop however is a major drawback because it limits its transportation and	Formatted: Font: Italic
40 41 42	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3 days) of the crop however is a major drawback because it limits its transportation and consumption in its fresh form (Westby, 2002). Hence processed forms of cassava have been	Formatted: Font: Italic
40 41 42 43	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3 days) of the crop however is a major drawback because it limits its transportation and consumption in its fresh form (Westby, 2002). Hence processed forms of cassava have been developed. Gari is a dried granulated food product with a slight acidic taste is one of the most	Formatted: Font: Italic
40 41 42 43 44	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3 days) of the crop however is a major drawback because it limits its transportation and consumption in its fresh form (Westby, 2002). Hence processed forms of cassava have been developed. Gari is a dried granulated food product with a slight acidic taste is one of the most common processed forms of cassava in West Africa. Gari is produced by grating (to remove	Formatted: Font: Italic
40 41 42 43 44 45	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3 days) of the crop however is a major drawback because it limits its transportation and consumption in its fresh form (Westby, 2002). Hence processed forms of cassava have been developed. Gari is a dried granulated food product with a slight acidic taste is one of the most common processed forms of cassava in West Africa. Gari is produced by grating (to remove cyanide inherent to the root) followed by fermentation (to produce flavour and make the	Formatted: Font: Italic
40 41 42 43 44 45 46	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3 days) of the crop however is a major drawback because it limits its transportation and consumption in its fresh form (Westby, 2002). Hence processed forms of cassava have been developed. Gari is a dried granulated food product with a slight acidic taste is one of the most common processed forms of cassava in West Africa. Gari is produced by grating (to remove cyanide inherent to the root) followed by fermentation (to produce flavour and make the product sour – by lowering pH value, the shelf life is also increased) and drying (to extend	Formatted: Font: Italic
40 41 42 43 44 45 46 47	crop for food security for millions of people in sub-Saharan Africa. The short shelf life (2-3 days) of the crop however is a major drawback because it limits its transportation and consumption in its fresh form (Westby, 2002). Hence processed forms of cassava have been developed. Gari is a dried granulated food product with a slight acidic taste is one of the most common processed forms of cassava in West Africa. Gari is produced by grating (to remove cyanide inherent to the root) followed by fermentation (to produce flavour and make the product sour – by lowering pH value, the shelf life is also increased) and drying (to extend the shelf life). Gari presents as a dried form, which makes it stable under ambient conditions,	Formatted: Font: Italic

51 carotenoids (pVACs) have been developed by conventional plant breeding methods and

Page 2 of 26

52 released for use by the local populations. These biofortified varieties could be used to help 53 tackle vitamin A deficiency (VAD) (Saltzman et al., 2009) an important public health 54 problem in sub-Saharan Africa and in the world. In some countries higher mortality rates, 55 susceptibility to infections and blindness can clearly be attributed to VAD occurrence. The new varieties have a different visible colour to the traditional varieties because they are 56 57 yellow compared to traditional cassava that is white and very low in provitamin A. These 58 biofortified varieties produce a gari that is very similar in colour to gari made with added 59 crude palm oil that also contains vitamin A (Abu et al. 2006). However, there are some 60 disadvantages in adding palm oil. Firstly it is not widely consumed, and also, the addition of 61 palm oil adds to the production costs, and finally darkening of gari occurs when added in 62 excess and rancidity can happen during storage (Burri et al. 2012). The use of gari made from 63 biofortified cassava would therefore solve the issue of rancidity and without the additional 64 cost of palm oil help tackle vitamin A deficiency on a wider scale. Nigeria is the most 65 densely populated country in Africa and an emerging country with a fast growing population 66 that could reach 300 million by 2050 (Oshikoya 2008) and the impact of such a product could 67 potentially impact millions. But the challenges are to measure the stability of carotenoids in 68 gari made with biofortified cassava and also to compare it with gari made with crude palm oil 69 that also contains provitamin A.

70

Understanding how pVACs degrade during storage of vitamin A- containing-gari is critical because it will affect its nutritional impact. Storage of gari at ambient temperatures is a current practice in Nigeria. Gari storage is not only generally practiced at household level but also at commercial level. Periods of storage are on average around six months but some processors can store up to a year. Stability of carotenoids in gari made from white cassava varieties with added palm oil has been studied during processing and storage at ambient

Page 3 of 26

77	temperature (Abu et al., 2006; Gouado et al., 2008; Uzomah et al., 2006). Gouado et al.
78	(2008) showed that during gari processing the product retained a significant amount of the
79	carotenoids from palm oil. In contrast, authors reported a significant loss in carotenoid during
80	storage that followed processing: Abu et al. (2006) measured a loss of 57% in total carotenoid
81	after 4 months at 28°C in Nigeria. However Uzomah et al. (2006) working also at 28°C in
82	Nigeria reported different results: an average loss of 25% after the 2 nd week of storage and of
83	50% by the 3 rd week. Some gari samples that had lower levels of palm oil lost most of
84	vitamin A activity after only 2 weeks of storage (Uzomah et al., 2006). These dissimilar
85	findings appeal for more research to understand the carotenoid degradation in palm oil gari
86	during storage under controlled conditions.
87	
88	The effect of storage on carotenoid in products made from biofortified crops has also been
89	studied. Stability of carotenoids during storage of biofortified maize has been studied by
90	Mugode et al. (2014). It was shown that most of the carotenoid degradation occurred in the
91	first weeks of storage and the degradation rate then lowered. Bechoff et al. (2011a) working
92	on biofortified orange-fleshed sweet potato similarly reported that storage of dried chips had
93	a dramatic effect on carotenoid stability (~80% loss in 4 months). Furthermore, the authors
94	demonstrated that the carotenoid degradation followed a first order degradation (logarithmic
95	curve), which explains why the degradation was higher in the first weeks of storage and then
96	stabilised with time. Temperature and oxygen were the main factors that caused the loss in
97	carotenoids whilst water activity only had a minor effect (Bechoff et al., 2010). A
98	mathematical model was developed to predict the degradation of trans- β -carotene, the main
99	carotenoid in sweet potato, under controlled conditions of temperature, oxygen and humidity
100	and the model was validated by field data (Bechoff et al., 2010).

Page 4 of 26

101	Little research has been done on biofortified cassava with relation to storage of gari. Ukenye,
102	et al. (2013) observed that the gari made with biofortified cassava was similar in appearance
103	to the gari made with palm oil (traditional gari). Onadipe Olapeju (2011) studied the
104	degradation of total carotenoids in gari from the varieties of biofortified yellow cassava
105	developed in Nigeria (01/1371; 01/1368 and 01/1412). According to the data presented by the
106	author, 50% on average of total carotenoids were lost after 3 month-storage at 30±2°C.
107	However there was minimal information on the degradation rate and the influence of
108	temperature.
109	There appears to be little published studies on the prediction of carotenoid degradation during
110	storage although it is a critical issue for gari containing carotenoids and hence gari's potential
111	impact on tackling VAD. More research is needed to understand the stability of gari from
112	biofortified cassava (BG). Traditional gari made with crude "red" palm oil (RPG) is a
113	common product in Southern Nigeria and should also be tested for stability to compare with
114	gari made from biofortified cassava. This information will be useful to understand the
115	potential for the promotion and marketing of gari made from biofortified yellow cassava in
116	Nigeria and its contribution to reducing VAD.
117	
118	2. Materials and Methods
119	
120	2.1. Description of samples
121	Biofortified yellow cassava_roots (TMS 01/1371) were harvested from Ikenne (about 2h drive
122	south from IITA, Ibadan, Nigeria). White cassava roots (variety IITA 3303, locally called
123	Oko-Iyawo) were harvested from the Army Barracks field in Ibadan, Nigeria. Cassava roots
124	had a growing period of approximately 12 months after planting. Roots (50kg per variety)
125	were processed into gari by commercial processors based at the Army Barracks, Ibadan:

Page 5 of 26

126	biofortified yellow cassava variety and white cassava variety with added red palm oil
127	(approximatively 0.45L/32.6kg or 0.328g/32.6kg of grated mash). The amount of red palm
128	oil to add to the mash was selected by the commercial processors. All the processing
129	parameters (time, temperature, pH, quantities etc.) were monitored and the gari produced was
130	of commercial quality. A representative sample of gari was stored in the freezer (-20°C) and
131	maintained frozen during transport and up to start of the storage experiment.
132	
133	2.2. Storage experiment and sample collection for carotenoid analysis
134	Gari samples (about 1kg of from either BG or from RPG) were divided into equal portions
135	using a riffle divider. Representative gari sub-samples (50g) were wrapped in a sewed cotton
136	bag and stored in Kilner jars (having metal lever catch and rubber seal) with a saturated salt
137	solution (Sodium Bromide (NaBr) that has a water activity (a _w) of about 0.5). The saturated
138	salt solution was used to maintain the ambient relative humidity constant around the gari
139	product so that only the effect of temperature could be measured. Jars in triplicate were
140	placed in incubators (LMS Cooled Incubator, Sevenoaks, UK) at the Natural Resources
141	Institute (NRI), University of Greenwich, UK and set at four different ambient temperatures
142	(19±1, 26±1, 33±1 and 40±1 °C). The range of temperatures was comprised between the
143	minimum and maximum ambient temperatures in Nigeria. Hence the degradation of
144	carotenoids during storage of gari could be predicted under similar temperature conditions as
145	those found in Nigeria. Samples were stored in jars for 80 days (20 th November 2012- 7 th
146	February 2013). The storing system used in the incubators was similar to the one used with
147	dried sweet potato (Bechoff, 2010). Stored gari samples (about 5g) were collected in a
148	representative manner by using a riffle divider and moisture content was checked at the
149	beginning and the end of storage. Sample collections at 19°C were on 24 th ; 49 th ; 60 th ; 80 th
150	day; collections at 26°C were on 18 th ; 24 th ; 49 th ; 60 th ; 80 th day; collections at 33°C were on

Page 6 of 26

151 10^{th} ; 18^{th} ; 24^{th} ; 49^{th} ; 60^{th} ; 80^{th} day.; collections at 40° C were on 10^{th} ; 18^{th} ; 24^{th} ; 31^{st} ; 49^{th} ; 60^{th} 152 day. Collected gari samples were immediately stored at -80° C.

153

154 2.3. Carotenoid analysis

155	The extraction stage was based on Rodriguez-Amaya and Kimura (2004) and described in
156	Bechoff et al. (2011a). Analyses were carried out at NRI, UK. In brief, gari samples (0.6-2.0g
157	depending on the carotenoid content in sample) were rehydrated for 10 minutes in 10 mL
158	tepid deionised water (water was heated at 30°C to facilitate extraction). The samples were
159	homogenised with 50mL methanol:tetrahydrofuran (THF) (1:1) for 1 minute and filtered. The
160	homogenised extract was rinsed with methanol:THF (1:1) until there was no yellow colour
161	left in the residue. Partition between the aqueous phase and organic phase containing the
162	carotenoids was achieved by the addition of petroleum ether (PE 40-60°C) and sodium
163	chloride (NaCl) solution (10%). The PE phase was further washed with deionised water,
164	dried by addition of anhydrous sodium sulphate, then filtered and made up to volume (50
165	mL). For the determination of individual carotenoids by HPLC, the carotenoid extracts in PE
166	(20ml20mL) were dried by flushing with nitrogen in a dry block system at 35° C. Extracts
167	were then dissolved in 500 µLTHF: Methanol (1:1). After vortexing, dissolved samples were
168	collected into a vial with septum for HPLC analysis. A reverse-phase high performance liquid
169	chromatography using an Agilent 1200 system (UK) was used with a polymeric C30 reverse
170	phase column (250 x 4.6 mm i.d. 5µm YMC (EUROP GmbH Germany) having a flow rate of
171	1 ml.min ⁻¹ , a temperature of 25°C, a running time of 40 minutes and an injection volume of
172	10µL. The isocratic mix consisted of Methanol: MTBE (80:20). Detection of compounds was
173	performed at 450nm. Concentrations on a fresh weight basis were determined by comparing
174	with standard curve of pure trans- β -carotene (Sigma, UK). Percentages of cis-isomers and
175	other minor compounds such as epoxides were also determined (Bechoff et al. 2011b). Minor

Page 7 of 26

176 compounds (epoxides of β -carotene) were tentatively identified when these were in very

177 small amounts. Trans- α -carotene was identified by injection of a mixture of carotenoids from

178 carrot extract (Sigma, UK).

179

- 180 2.4. Retention
- 181 Retention of trans-β-carotene (TR) was calculated using a simplified equation of the true
- 182 retention assuming that the dry matter content was constant and therefore the weight of gari
- 183 did not vary in the samples stored (at constant humidity in incubators) (Equation 1).

$$R(\%) = 100x \frac{\text{trans} - \beta - \text{carotene content per kg of stored } \frac{3}{84}}{\text{trans} - \beta - \text{carotene per kg of unstored gari}}$$
(Equation 1

- 186 2.5. Kinetics modelling and statistical analysis
- 187

188 Carotenoid content was determined on a fresh weight basis (FW) at different storage times 189 and temperatures in triplicate. Carotenoid degradation followed a first order kinetics. Hence 190 logarithms of carotenoid content were linear as a function of storage time (Excel, Windows 191 2007) (Equation 2): $\ln C = \ln C_0 \frac{19}{kt}$ (Equation 2) Where: C: Carotenoid content of gari (µg.g⁻¹) at storage time t; C₀: Carotenoid content of 193 food (μ g.g⁻¹) at initial time (before storage); t: storage time (day); k: degradation constant rate 194 195 (day⁻¹). k was determined graphically and using linear regression (XLStat 20144 software. 196 http://www.xlstat.com) for the three replicate data pooled together. 197

- 198 Carotenoid degradation kinetics can be evaluated using different models as in Bechoff et al.
- 199 (2010). The most common model is Arrhenius model. The Arrhenius model (Equation 3) is

Page 8 of 26

200 an empirical collision model that describes the relationship between reaction constant rates

201 and temperature using activation energy (E_a) and a pre-exponential factor (k_{∞}).

$$k = k_{\infty} e^{\frac{202}{RT}}_{203}$$
 (Equation 3)

- 204 Where: T: temperature (K)
- 205 k_{∞} : value of k at infinite time $t = \infty (day^{-1})$
- 206 Ea: Activation energy (kJ.mol⁻¹)
- 207 R: gas constant = $8.314 \text{ J} \cdot \text{K}^{-1}.\text{mol}^{-1}$

208

- 209 The prediction model (Equation 4) is calculated by the equation based on the Arrhenius
- 210 model and using temperature (T) expressed in Kelvin:

$$C = C_0 e^{-k_{\infty} \int_{0}^{t} \frac{244}{212}}$$
 (Equation 4)
212

214 Determination of Ea and k_∞ parameters helps predict carotenoid degradation for known

215 storage temperatures and times. Ea and k_{∞} were determined using linear regression (XLStat

- 216 <u>2014 software).</u>
- 217 Other models however exist. The Eyring model (Equation 5) is based on the transition state
- 218 theory in which enthalpy of activation (ΔH^*) and entropy of activation (ΔS^*) are the model's
- 219 parameters. The model's parameters were identified from experimental data measured in

220 triplicate using linear regressions.

$$k = \frac{k_B}{h}T \cdot e^{-\frac{\Delta H^* - 223^*}{RT}}$$
 (Equation 5)

223 Where: $k_{\rm B}$: Boltzmann constant = 1.381 $\cdot 10^{-23}$ J.K⁻¹

224 h: Planck constant = $6.626 \cdot 10^{-34}$ J.s

225 ΔH*: activation enthalpy (kJ.mol⁻¹)

Page 9 of 26

226	ΔS^* : activation entropy (J.mol ⁻¹ .K ⁻¹)
227	
228	Data were processed on SPSS 20.0 software using One Way Analysis of Variance toa t-test
229	to determine if there were significant differences (p<0.05) between model parameters of the
230	two gari products (BG and RPG).
231	
232	3. Results and discussion
233	
234	3. <u>21</u> . Nutritional value of stored gari
235	
236	The nutritional value (vitamin A activity) of the gari products at different storage times and
237	ambient temperatures was determined (Table 1). Vitamin A activities per daily "100 g"
238	portion of BG and RPG based on the classical estimate were 125.6126 and 84.885 RAE,
239	respectively. On the other hand unstored BG and RPG had substantial average vitamin A
240	activity based on the new estimate (301.4 and 203.5 RAE, respectively). The Estimated
241	Average Requirement (EAR) for a child is 200 RAE based on FAO/WHO (2002) and 275
242	RAE based on the National Academy of Sciences/Institute of Medicine (2001) s'
243	recommendations. According to the standard estimate for food, $1 \ \mu g.g^{-1}$ Retinol Activity
244	Equivalent (RAE) corresponds to $12 \ \mu g.g^{-1}$ all- <i>trans</i> -BC or $24 \ \mu g.g^{-1}$ minor carotenoids
245	(National Academy of Sciences / Institute of Medicine, 2001). Recent studies on the
246	bioconversion of provitamin A from cassava products indicated that the factor might be
247	lower: working with women, Liu et al (2010) showed that the bioefficacy of the BC from
248	porridge made with biofortified cassava was as good as that of a BC supplement (2:1). Later,
249	La Frano et al. (2013) calculated a bioconversion factor of 4.5:1 for biofortified cassava
250	meals and Phorbee et al. (2013), a factor of 6:1. Therefore the conversion factor 5:1 was

Page 10 of 26

251	suggested here as 'new' estimated bioconversion factor. With either estimate (classical or
252	new), the potential daily contribution of yellow gari to a child's vitamin A intake is close or
253	superior to 50% of EAR.

254

255	However, during storage, vitamin A activity of gari products sharply decreased. Our results
256	using the classical estimate showed that after 60 days vitamin A activity was 54.1 and 64.2
257	RAE per 100g at 26°C; 24 .3 and 51 .4 RAE at 33°C, and 24 .3 and 8.6 <u>9</u> and 33 .4 RAE at 40°C
258	for BG and RPG, respectively. <u>Calculations on estimation of vitamin A activity presented</u>
259	here highlighted that the choice of adequate bioconversion factor (classical or new) is critical
260	because it will be determinant to provide advice on shelf life of the gari product.
261	Using the new estimate, values superior to 50 RAE would only be achieved with BG stored at
262	33°C for up to 60 days or at 40°C for 35 days. The decrease was temperature dependent.
263	Uzomah et al. (2006) analysed gari products from six different locations in Eastern parts of
264	Nigeria where red palm oil gari is the most common form of gari consumption. Their results
265	similarly reported that vitamin A activity of palm oil-enriched gari significantly decreased
266	when stored at ambient temperature. Initial vitamin A activity in freshly made gari was very
267	variable ranging between 13.2-723 RAE per 100g (using classical estimate), which shows a
268	wide variation in levels of palm oil added by different communities. Uzomah et al. (2006)
269	reported a loss of 25% in activity after 2 weeks and 50% after 3 weeks of storage at ambient
270	temperature of 28°C. This loss was higher that the results presented here (10% for RPG after
271	15 days) but other factors under field storage such as light and humidity might have
272	contributed to additional loss (Uzomah et al., 2006).
273	

Page 11 of 26

274	Calculations on estimation of vitamin A activity presented here highlighted that the choice of	
275	adequate bioconversion factor (classical or new) is critical because it will be determinant to	
276	provide advice on shelf life of the gari product.	
277		
278	3. <u>42</u> . Carotenoid composition of unstored gari from yellow cassava and white cassava with	
279	palm oil	
280		
281	Trans-β-carotene and other carotenoid (9-cis, 13-cis, 5,6 epoxy, 5,8-β-carotene and trans-α-	
282	carotene) contents were determined on a fresh weight basis at different storage durations and	
283	temperatures (Fig. 2).	
284		
285	Trans- β -carotene content on a fresh basis (FW) in unstored gari from TMS 01/1371 variety	
286	was 10.9 μ g.g ⁻¹ on average and 13.0 μ g.g ⁻¹ as a maximum. Carotenoid content of gari from	
287	yellow cassava (BG) obtained by conventional cross breeding techniques has been	
288	determined (Chavez et al., 2007; La Frano et al., 2014; Maziya-Dixon et al., 2009; Onadipe	
289	Olapeju et al., 2011; Thakkar et al., 2009). Chavez et al. (2007); Frano et al. (2014) reported	
290	lower trans- β -carotene content in gari, between 3 and 4 μ g.g ⁻¹ on a dry basis (DW) whilst	
291	Maziya-Dixon et al. (2009) and Onadipe Olapeju et al. (2011) working on the variety TMS	
292	01/1371 indicated total carotenoid content of 16 and 20 μ g.g ⁻¹ FW, respectively that was in	
293	accordance with our data: in this study, maximal total carotenoid content determined by	
294	spectrophotometer was approximatively 18 μ g.g ⁻¹ FW (data not shown). In addition, Thakkar	
295	et al. (2009) found a trans- β -carotene content in gari from TMS 01/1371 variety around 15	
296	$\mu g.g^{-1}$ DW, which would be approximately 13 $\mu g.g^{-1}$ FW for a product with approximatively	
297	10% moisture content. Our data on unstored gari from yellow cassava TMS 01/1371 is	
298	therefore mostly in agreement with previously published work with the same variety.	

Page 12 of 26

299	Carotenoid content of gari from genetically modified cassava has also been measured (Failla
300	et al., 2012). Nonetheless levels of trans- β -carotene reported between 3-8 μ g.g ⁻¹ DW were
301	lower than in our study.

302

Differences in initial carotenoid content of gari described by different authors may be
 explained by cassava varietal differences but also by variations in processing steps that
 influences carotenoid retention from roots into gari.

306

307 Average trans- β -carotene and trans- α -carotene content in unstored RPG were 5.60 µg.g⁻¹ and 3.10 μ g.g⁻¹ respectively, on a fresh basis (FW). Trans- α -carotene content in RPG was about 308 309 six times more than in BG. The higher concentration of trans- α -carotene in RPG can be 310 explained by the composition of red palm oil (Fig. 1A and B): red palm oil is known to 311 contain both trans- β -carotene and trans- α -carotene (Bonnie Tay & Choo, 2000). The 312 carotenoid content of this gari would depend on the amount of palm added during the 313 process, which can be variable according to practices of gari processors (Gouado et al., 314 2008). Alpha and β -carotene contents of gari reported by Gouado et al. (2008) were at least 100 times greater than ours (trans- α -carotene: 352.6-1572.5 µg.g⁻¹ and trans- β -carotene: 315 309.7-1624.3 µg.g⁻¹, for 2 and 8 ml of oil respectively for 210g of gari) and therefore indicate 316 317 that the analysis was done on the palm oil and not on the gari product itself (2mL for 210g is 318 actually quite close to the amount of oil added in this study). Mortensen (2005) reported that 319 palm oil identified on a C30 HPLC column mainly contained trans-β-carotene and trans-α-320 carotene and the other compound identified was 13-cis- β -carotene. Although many minor 321 carotenoids (about 15, including lycopene and γ -carotene) are present in palm oil (Bonnie 322 Tay & Choo, 2000; Mortensen, 2005) they were not visible on the present chromatogram 323 (Fig. 1B). Andreu-Sevilla et al. (2009) equally reported that the main carotenoids absorbed in

Page 13 of 26

324	potato fried in palm oil were α and β -carotene, which was in accordance with this present
325	study. In addition, Andreu-Sevilla et al. (2009) reported amounts of lutein, 5,6 epoxy-α-
326	carotene, γ -carotene; δ -carotene; ϵ -carotene; 15-cis and 9-cis- β -carotene in palm oil that were
327	partially absorbed in fried potato. The minor carotenoids in common for BG and RPG that
328	were identified in our study were all from β -carotene, being 13-cis, 9-cis, 5,6 and 5,8 epoxy-
329	β -carotene. In some cases, minor carotenoids were in very small amount, which made their
330	identification more difficult (Fig. 21).
331	
332	3.3. Kinetics of carotenoid degradation in gari during storage
333	
334	Globally major and minor carotenoids compounds degraded during storage (Fig. 2). The
335	degradation of the minor compounds was more difficult to model than that of major
336	carotenoids because of the very low concentrations recorded. Degradation kinetics of 13-cis-
337	β -carotene content was globally similar to that of trans- β -carotene and 9-cis- β -carotene but
338	slightly more irregular. According to Achir et al. (2013) 5,6 and 5,8 epoxy- β -carotene were
339	formed from cis-isomers on dried and stored sweet potato; therefore irregular pattern for
340	epoxides may be explained by their formation that precedes their oxidation. Besides, 5,6 and
341	5,8-epoxy- β -carotene were in very small concentrations, which made mathematical
342	modelling difficult. Overall it appears that all minor carotenoids decreased quite sharply
343	during storage and degradation was increased with temperature and storage duration.
344	
345	Trans- β -carotene and 9-cis- β -carotene were both the main carotenoids present in BG and
346	RPG (Fig. 2). Degradation of trans-β-carotene followed logarithmic first order kinetics during
347	storage between 19 and 40°C. Similarly, the degradation of 9-cis-β-carotene also followed a
348	first order kinetics equation.

Page 14 of 26

349

350	Degradation rates (k) for major carotenoids are found in Table 2. Rates of carotenoid	
351	degradation were determined from the first order kinetics linear curves for BG and RPG	
352	stored in incubators. The higher the temperature and the longer the storage time, the greater	
353	was the trans- β -carotene degradation and this was greatest for the gari made from yellow	
354	cassava (BG) and least for the gari made with palm oil (RPG). Coefficients of determination	
355	(R ²) showed that overall-globally the first order kinetics equation fitted carotenoid	
356	degradation well $(\underline{R}^2 \ge 0.8)$. RPG at lower temperatures (<i>i.e.</i> 19°C) however did not fit the	Formatted: Superscript
357	first order degradation as well as BG (\mathbb{R}^2 around 0.5-0.7) but the reasons are not clear.	
358		
359	Degradation rates (k) of trans- β -carotene and 9-cis- β -carotene clearly differ in BG and RPG	
360	(Table 2). In addition, trans α carotene was identified in significant concentrations in the	
361	palm oil gari samples (RPG) (Table 2). Trans- α -carotene followed a first order kinetics and	
362	had close rates of degradation as those of trans β carotene and 9 cis β carotene in RPG.	
363	Degradation rates of trans- β -carotene and 9-cis- β -carotene were greater for BG compared to	
364	RPG stored under the same conditions. Although the initial trans-β-carotene content and the	
365	initial vitamin A activity was about twice higher in BG compared to RPG, trans- β -carotene in	
366	BG degraded much faster.	
367		
368	More research would be needed to understand the difference in kinetics of carotenoid	
369	degradation in these two types of gari. The more complex matrix of palm oil gari including	
370	several different carotenoids having different types of kinetics might explain why the	
371	degradation of some minor carotenoids did not fit a first order degradation and why the major	
372	carotenoids (trans- β ; 9-cis- β -carotene-and trans α -carotene) did not fit well a first order	
373	degradation at lower temperature. Possibly the lower concentrations of carotenoids in palm	

Page 15 of 26

374	oil gari might also make the linearisation more difficult. Overall, the fitness of the models
375	demonstrates that mathematical modelling for the major carotenoids present is possible when
376	working with yellow cassava in spite of the relatively lower concentrations in cassava
377	compared to orange-fleshed sweet potato (Bechoff et al., 2010).
378	
379	3.4. Model prediction of β -carotene degradation in gari products
380	3.4.1. Activation energy of β -carotene degradation based on model prediction
381	The degradation of trans- β -carotene was further modelled using an Arrhenius and Eyring
382	models (Table 3). The models fitted well trans and 9-cis- β -carotene degradation in incubators
383	between 19 and 40°C for both BG and RPG gari preparations. Degradation kinetics of trans-
384	α -carotene and also more minor carotenoid compounds present in very small amounts in gari
385	(Fig. 2) could not be clearly described by the above models. Concentrations might be too
386	weak to be accurately predicted.
387	
388	Activation energy for trans- β -carotene in BG ($\frac{6360}{.1-4}$ kJ.mol ⁻¹) was of the same order as in
389	dried orange-fleshed sweet potato (64.2 kJ.mol ⁻¹) during ambient storage (Bechoff et al.,
390	2010) though the carotenoid content in yellow cassava was much less than in orange-fleshed
391	sweet potato. Interestingly, Eyring parameters- activation enthalpy and entropy being 60.5
392	kJ.mol ⁻¹ and 77.1 J. mol ⁻¹ , respectively in this study and 61.7 kJ.mol ⁻¹ and 74.3 J. mol ⁻¹ ,
393	respectively in Bechoff et al. (2010) were also similar.
394	
395	Activation energy (Ea) was greater for RPG compared to BG ($\frac{82.381.0}{1.0}$ and $\frac{6360.1-4}{1.0}$ kJ.mol ⁻¹
396	for trans- β -carotene, respectively, and $\frac{75.673.7}{1.2}$ and $\frac{64.161.2}{1.2}$ kJ.mol ⁻¹ for 9-cis- β -carotene,
397	respectively). It is therefore confirmed that the energy needed to degrade trans- β -carotene

Page 16 of 26

398	was higher in RPG. Palm oil might have coated trans- β -carotene present in gari from white
399	cassava and this might have limited degradation. Oxidation of fatty acids and carotenoids was
400	similarly reported to be a free radical mechanism (Lieber 1993). It is therefore possible that
401	fatty acids present in palm oil might have been oxidised in the place of trans- β -carotene and
402	hence acted as a protection against carotenoid degradation. Achir et al. (2010) reported that
403	Ea of trans- β -carotene in pure palm oil was comparable, being 86 kJ.mol ⁻¹ , and this was in
404	accordance with this present study. More research shall be required to understand how
405	different matrices (i.e. different oil types; vegetable cells) can affect activation energy of
406	carotenoids.
407	3.4.2. Model prediction of retention during storage of gari
408	
409	Relationships between storage time, storage temperature and predicted retention of trans- β -
410	carotene are described in Fig. 3. Predicted nutritional values for gari (vitamin A activity)
411	were also calculated. According to the Arrhenius model predictions, if BG with an initial
412	nutritional value of 301.4 RAE (based on the new conversion factor) was stored for 60 days
413	(2 months) at an ambient temperature of 25°C and constant humidity, about $\frac{3244}{32}$ % of the
414	initial trans- β -carotene would be retained (equivalent to $\frac{135-136}{136}$ RAE in the product).
415	Periods of storage are 5-6 months on average under tropical temperatures (about 25°C in the
416	daytime) in sub-Saharan Africa (i.e. Nigeria). If BG was stored for 5 months at 25°C, only
417	$\frac{1213}{3}$ % of trans- β -carotene (equivalent to 41 RAE) would be retained and if it was stored for
418	6 months, about 8% of trans- β -carotene would be retained (equivalent to $\frac{27-28}{28}$ RAE) and the
419	nutritional value would be negligible. If the same gari was stored at a lower temperature of
420	20°C about 2526% would be preserved after 5 months leading to a nutritional value of about
421	79 RAE. If the initial carotenoid content were the same as for BG (with further addition of

Page 17 of 26

422	palm oil), RPG could be stored three times longer, for up to 50 days according to the
423	Arrhenius model predictions. Hence the traditional practices of storage for gari in Nigeria
424	should not be recommended when working with BG. One option may be to lower storage
425	temperature but this would require facilities such as a fridge or freezer.
426	
427	On the other hand, RPG with an initial nutritional value of 203.5 RAE would retain about
428	80% of the initial trans- β -carotene after 60 days (2 months) at an ambient temperature of
429	25°C and constant humidity (corresponding to 142 RAE). About 5057% would be retained if
430	the same gari was stored for 5 months at 25°C (about 832 RAE). Trans- β -carotene contained
431	in RPG was therefore more stable during storage. If the initial carotenoid content were the
432	same as for BG (with further addition of palm oil), RPG could be stored three times longer,
433	for up to 50 days according to the Arrhenius model predictions.
434	
435	While provitamin A was more stable in RPG, the presence of palm oil created quality issues
436	such as rancidity (Abu et al. 2006; Burri et al., 2012): Abu et al. (2006) reported that whilst
437	half of the initial carotenoid content was lost during a 2 month-ambient storage there was a
438	concomitant increase in the peroxide index (six times more than the initial value) of the gari
439	product.
440	
441	
442	4. Conclusions
443	
444	The effect of temperature on carotenoid stability was measured in the two types of gari; from
445	yellow cassava (BG) and from white cassava with palm oil (RPG). Carotenoid content was
446	temperature and storage time sensitive. Trans- and 9-cis- β -carotene contents in BG or RPG

Page 18 of 26

447	followed a first order (logarithmic) degradation equation during storage. Although the initial
448	content of trans- β -carotene and the initial vitamin A activity was about twice higher in BG
449	compared to RPG, trans- β -carotene BG degraded much faster. Trans- and 9-cis- β -carotene
450	degradation in BG and RPG was accurately described by the Arrhenius and Eyring models.
451	The mathematical model can therefore be used to predict storage times at various storage
452	temperatures. The addition of red palm oil significantly increased the shelf life of gari in
453	terms of carotenoid retention: fatty acids present in palm may have protected carotenoids
454	against degradation. More research would be needed to understand the role of oil in
455	preserving carotenoids in gari over time. Although gari made with added palm oil could be
456	stored longer, issues of oil rancidity of the latter within the typical market turn-around time
457	for such product will need to be explored. In conclusion, this work has proven that gari made
458	with biofortified cassava has a limited carotenoid stability under ambient temperature
459	conditions and breeders, processors and marketers or supporters should be aware of this
460	constraint.

462 Acknowledgments

400	constraint.
461	
462	Acknowledgments
463	
464	This research was supported by HarvestPlus. The views expressed are however those of the
465	authors. We wish to thank HarvestPlus staff in Nigeria who helped with monitoring the
466	processing of gari product: Mary Okocha, Joy Okoh, Christiana Okon Essien and trainees
467	Osanyinro Oluwatosin, Onyiba Cosmos Ifeanyi, Tobi Olaniyi and Bose and the workers at
468	Barrack Centre who processed the gari. We would like to thank Dudley Farman,-(NRI) for
469	carrying out the HPLC analyses at NRI. We express our gratitude to Dr. Corinne Rumney,
470	(NRI) for helping with the sample collection. We also would like to thank Dr. Stephen Young
471	(NRI) for his help and insights in statistical analysis.

Page 19 of 26

472	
473	References
474	
475	Abu, J.O., Badifu, G.I.O., Akpapunam, M.A., 2006. Effect of crude palm oil inclusion on
476	some physic-chemical properties of gari – a fermented cassava food product. Nigerian Food
477	Journal 24, 73-79.
478	
479	Achir, N., Randrianatoandro, V. A., Bohuon, P., Laffargue, A., & Avallone, S., 2010. Kinetic
480	study of β -carotene and lutein degradation in oils during heat treatment. European Journal of
481	Lipid Science and Technology 112, 349-361.
482	
483	Achir, N., Pénicaud, C., Bechoff, A., Boulanger, R., Dornier, M., Dhuique-Mayer, C., 2013.
484	Use of Multi-response Modelling to investigate mechanisms of β -carotene degradation in
485	dried orange-fleshed sweet potato during storage: from carotenoids to aroma compounds.
486	Food and Bioprocess Technology 1-14.
487	
488	Andreu-Sevilla, A.J. Hartmann, A. Burló, F. Poquet, N., Carbonell-Barrachina, A.A., 2009.
489	Health benefits of using red palm oil in deep-frying potatoes: low acrolein emissions and high
490	intake of carotenoids. Food Science and Technology International 15, 15-20.
491	
492	Bechoff, A. (2010). Investigating carotenoid losses after drying and storage of orange-fleshed
493	sweet potato. PhD thesis, University of Greenwich, UK.
494	
495	Bechoff, A., Dhuique-Mayer, C., Dornier, M., Tomlins, K., Boulanger, R., Dufour, D.,
496	Westby, A., 2010. Relationship between the kinetics of β -carotene degradation and

Page 20 of 26

497	norisoprenoid formation in the storage of dried sweet potato chips. Food Chemistry 121, 348-	
498	357.	
499		
500	Bechoff, A., Tomlins, K.I., Dhuique-Mayer, C., Dove, R., Westby, A., 2011a. On-farm	
501	evaluation of the impact of drying and subsequent storage on the carotenoid content of	
502	orange-fleshed sweet potato. International Journal of Food Science & Technology, 46, 52-60.	
503		
504	Bechoff, A. Poulaert, M., Tomlins, K.I., Westby, A., Menya, G., Young S., Dhuique-Mayer,	
505	C., 2011b. Retention and bioaccessibility of β -carotene in blended food from sub-Saharan	
506	Africa containing orange-fleshed sweet potato. Journal of Agricultural & Food Chemistry 59,	
507	10373-10380.	
508		
509	Bonnie Tay, Y. P., & Choo, Y. M., 2000. Practical guide to establishing palm carotenoids	
510	profiles by HPLC with three-dimensional diode array detector. Palm Oil Developments 33,	
511	13-17.	
512	Burri, B.J., 2012. Evaluating global barriers to the use of red palm oil as an intervention food	
513	to prevent vitamin A deficiency. Comprehensive Reviews in Food Science and Food Safety	
514	11(2), 221-232.	
515		
516	Chavez, A.L., Sanchez, T., Ceballos, H., Rodriguez-Amaya, D.B., Nestel, P., Tohme, J.,	
517	Ishitani, M., 2007. Retention of carotenoids in cassava roots submitted to different processing	
518	methods. Journal of the Science of Food and Agriculture 87, 388-393.	

519

Formatted: English (U.K.)

520	Failla, M.L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F., Fregene, M., Sayre,	
521	R.T., 2012. Retention during processing and bioaccessibility of β -carotene in high β -carotene	
522	transgenic cassava root. Journal of Agricultural & Food Chemistry 60, 3861-3866.	
523		
524	FAO/WHO, 2002. Vitamin A. In Human Vitamin and Mineral Requirements. Report of joint	
525	FAO/WHO expert consultation: Bangkok, Thailand (pp. 87-107). Rome, Italy: Food and	
526	Nutrition Division FAO.	
527		
528	Gouado, I., Demasse Mawamba, A., Meyimgo Ouambo, R. S., Some, I. T., Félicité, T. M.,	
529	2008. Provitamin A carotenoid content of dried fermented cassava flour: The effect of palm	
530	oil addition during processing. International Journal of Food Engineering 4(4) 1556-3758.	
531		
532	National Academy of Sciences/Institute of Medicine, 2001. Vitamin A. In Dietary Reference	
533	Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron,	
534	Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC. National	
535	Academy Press.	
536		
537	La Frano, M. R., Woodhouse, L. R., Burnett, D. J., Burri, B. J., 2013. Biofortified cassava	
538	increases β -carotene and vitamin A concentrations in the TAG-rich plasma layer of American	
539	women. British Journal of Nutrition 110, 310-320.	
540		
541	La Frano, M., Zhu, C., Burri, B., 2014. Effects of processing, cooking, and storage on β -	
542	carotene retention and bioaccessibility in biofortified cassava (Manihot esculenta) (646.4).	
543	The FASEB Journal 28 (1 Supplement), 646-4.	

544

545	Liu, W., Zhou, Y., Sanchez, T., Ceballos, H., & White, W. S., 2010. The vitamin A
546	equivalence of beta-carotene in beta-carotene-biofortified cassava ingested by women. The
547	FASEB Journal, 24 (meeting abstract supplement), abstract No. 92.7
548	
549	Lieber, D.C., 1993. Antioxidant reactions of carotenoids. In L.M. Canfield, & J.A., Olson
550	(Eds), Carotenoids in Human Health. (pp. 20-31). New York, NY, USA: The New York
551	Academy of Sciences.
552	
553	Maziya-Dixon, B., Dixon, A.G.O., Ssemakula, G., 2009. Changes in total carotenoid content
554	at different stages of traditional processing of yellow-fleshed cassava genotypes. International
555	Journal of Food Science & Technology 44, 2350-2357.
556	
557	Mortensen, A., 2005. Analysis of a complex mixture of carotenes from oil palm (Elaeis
558	guineensis) fruit extract. Food Research International, 38, 847-853.
559	
560	Mugode, L., Ha, B., Kaunda, A., Sikombe, T., Phiri, S., Mutale, R., De Moura, F. F., 2014.
561	Carotenoid retention of biofortified provitamin A maize (Zea mays L.) after Zambian
562	traditional methods of milling, cooking and storage. Journal of Agricultural and Food
563	Chemistry (In press).
564	
565	National Academy of Sciences / Institute of Medicine, 2001. Vitamin A. In Dietary
566	Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine,
567	Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC,
568	USA: National Academy Press.

569

Page 23 of 26

570	Oshikoya, T. W. 2008. Nigeria in the global economy. Business Economics, 43(1), 31-43.	
571		
572	Onadipe Olapeju, Olubusola, 2011. Total carotenoid content, retention, bioavailability and	
573	consumer acceptability of gari from bio-fortified cassava roots. PhD thesis, University of	
574	Agriculture, Abeokuta, Nigeria.	
575		
576	Phorbee, O. O., Olayiwola, I. O., Sanni, S.A., 2013. Bioavailability of Beta Carotene in	
577	Traditional Fermented, Roasted Granules, Gari from Bio-Fortified Cassava Roots. Food and	
578	Nutrition Sciences 4(12), 1247.	
579		
580	Rodriguez Amaya, D.B. & Kimura, M., 2004. HarvestPlus handbook for carotenoid analysis.	
581	In HarvestPlus Technical monograph series 2. HarvestPlus handbook for carotenoid analysis	
582	(pp. 1-58) Washington DC, USA: HarvestPlus c/o International Food Policy Research	
583	Institute. [Online] <u>http://www.harvestplus.org/pdfs/tech02.pdf</u>	Field Code Changed
584		
585	Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., Pfeiffer, W. H.,	
586	2013. Biofortification: progress toward a more nourishing future. Global Food Security 2(1),	
587	9-17.	
588		
589	Thakkar, S. K., Huo, T., Maziya-Dixon, B., Failla, M. L., 2009. Impact of style of processing	
590	on retention and bioaccessibility of β -Carotene in Cassava (Manihot esculanta, Crantz).	
591	Journal of Agricultural and Food Chemistry 57(4), 1344-1348.	
592		

- 593 Ukenye, E., Ukpabi, U. J., Chijoke, U., Egesi, C., Njoku, S., 2013. Physicochemical,
- 594 nutritional and processing properties of promising newly bred white and yellow fleshed
- 595 cassava genotypes in Nigeria. Pakistan Journal of Nutrition, 12(3), 302-305.
- 596
- 597 Uzomah, A., Ubbaonu, C. N., Osuji, C. M., 2006. Vitamin A retention in palm oil-gari during
- 598 processing and storage. Nigerian Food Journal 23(1), 69-73.
- 599
- 600 Westby, A. 2002. Cassava utilization, storage and small-scale processing. In R.J. Hillocks,

- 501 J.M. Thresh & A.C. Bellotti (Eds.), Cassava biology, production and utilization (pp 281-300).
- 602 Oxon: CABI Publishing.
- 603
- 604
- 605

٠

Page 26 of 26

Table 1. Estimation of vitamin A activity (µg retinol equivalent) for a 100g portion of gari made from yellow biofortified cassava (BG) and from white cassava	
with palm oil (RPG) (μ g RAE ^a) during storage and maintained at constant humidity ($a_w = 0.5$ for NaBr)	

RAE ^a estimate		5:1 ^b		12:1 ^b	12:1 ^b		
T (°C)	Storage days	BG	RPG	BG	RPG		
	Initial	301 .45 ±7 .36	203 .49±5.88<u>6</u>	125.6<u>126</u>0±3.07	<u>84.7985±2.452</u>		
19	24	256 .5 ±11 .4	208.9<u>209</u>±10.8<u>11</u>	106.9<u>107</u>±4.7<u>5</u>	87 .0 ±4. 5		
	49	205 .2 ± <u>5.45</u>	161 .5 ±24 .0	85 .5 ±2 .2	67 .3 ±10 .0		
	60	199.7<u>200</u>±7.3	174.8<u>175</u>±12.7<u>13</u>	83 .2 ±3 .0	72.8<u>73</u>±5.3 5		
	80	155.5<u>156</u>±9.1	139.8<u>140</u>±18.2	<u>64.865±3.84</u>	58 .2 ± 7.6 8		
26	18	244.8<u>245</u>±23.5<u>23</u>	181 .1 ±8 .2	102 .0±9.8<u>10</u>	75 .4 ±3 .4		
	24	250 .5±25.7 26	190 .3 ± 10.9 <u>11</u>	104 .4±10.7<u>11</u>	79 .3 ±4 .5		
	49	150 .3 ±29 .2	135 .1 ±7 .0	62.6<u>63</u>±12.2	56 .3±2.9<u>3</u>		
	60	129.8<u>130</u>±20.1	154 .0 ± 8.7 9	54 .1 ±8 .4	64 .2±3.64		
	80	99 .2 ±15 .1	130 .1 ±12 .3	41 .3 ±6 .3	54 <mark>.2</mark> ±5 <mark>.1</mark>		
33	10	200.8<u>201</u>±14.1	147.6<u>148</u>±15.7<u>16</u>	83.7<u>84</u>±5.9 6	61 .5 ±6 .5		
	18	203.9204±11.612	199.6<u>200</u>±5.7<u>6</u>	85 .0 ±4.8 <u>5</u>	83 .2 ±2.4		
	24	172 .4±14.8<u>15</u>	188.7<u>189</u>±8.2	71.9<u>72</u>±6.2	78.6<u>79</u>±3.4		
	49	87 . _4± 6.7 7_	137 .3 ± <u>9.910</u>	36 <mark>.4±<u>2.83</u></mark>	57 <mark>.2</mark> ±4 <mark>.1</mark>		
	60	58 .3 ± <u>1.8</u> 2	123 .3 ± <mark>5.86</mark>	24 .3 ±0.8 <u>1</u>	51 <mark>.4</mark> ±2 <mark>.4</mark>		
	80	4 <u>0.841</u> ±2.83	92.9<u>93</u>±3.8<u>4</u>	17 .0 ±1 .2	38.7<u>39</u>±1.6 2		
40	10	147.8<u>148</u>±25.9 26	164 <mark>.0</mark> ± <mark>4.7</mark> 5	<u>61.662±10.811</u>	68 .3 ±2 .0		
	18	139.6<u>140</u>±7.1	182.7<u>183</u>±5.2	58 .2 ±3 .0	76 .1 ±2 .2		
	24	99 .4 ±3 .4	157 .0 ±9 .5	41 .4 ±1 .4	65 <mark>.4±3.94</mark>		
	31	67.6 <u>68</u> ±1.72	143.7<u>144</u>±6.6 7	28 .1 ±0.7 <u>1</u>	59.9<u>60</u>±2.7 3		
	49	28.6<u>29</u>±1.52	99 .3 ±3 .5	11.9<u>12</u>±0.61	41 .4 ±1 .5		
	60	20.6<u>21</u>±0.91	80 .1±6.6<u>7</u>	<u>8.69</u> ±0.4	33 <mark>.4±<u>2.8</u>3</mark>		
	80	12 .5 ±0.2	42 .3 ±0.6 <u>1</u>	5 <mark>.2</mark> ±0.1	17.6<u>18</u>±0.3		

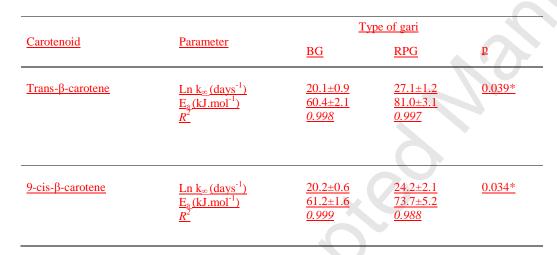
Mean of triplicate determinations ± standard deviation. ^a Retinol Activity Equivalent. ^b RAE was calculated for a bioconversion factor of 5:1 (La Frano et al., 2013) estimate = {All-trans-β-carotene content /5 + minor β-carotene content /10} x unit (g) or for a bioconversion factor of 12:1 (National Academy of Sciences / Institute of Medicine, 2001). Classical estimate = {All-trans-β-carotene content /12 + minor β-carotene content /24} x unit (g). Minor compounds are epoxy and cis β-carotene that are estimated to possess half of trans β-carotene activity.

Formatted Table

Gari	Temperature	(°C)	19	26	33	40	4	Formatted Table
	Trans-β-	k	0.0083±0.0004	0 <u>01580144</u> ±0.00070011	0 <u>02760271</u> ±0. 0010 0008	0. 0479 0430±0. 0014 0013		
	carotene	R^2	0.979 ±0.009	0. 948<u>900</u>±0.041	0. 990<u>984</u>±0.013	0. 987<u>981</u>±0.014		
		p	<u><0.0001*</u>	<u><0.0001*</u>	<u><0.0001*</u>	<u><0.0001*</u>		Formatted: Not Highligh
BG	9-cis-β-	k	0.0071±0. 0005 0004	0. 0125 0123±0. 0006 0010	0. 0234 0230±0. 0010 0008	0.0429 0.0375±0. 0016 0010		
	carotene	R^2	0.968±0.019 0.951	0.900±0.054 0.887	0.984±0.014 0.980	0.991±0.009 0.983		
		р	<0.0001*	<u><0.0001*</u>	<0.0001*	<0.0001*		
. <u></u>	Trans-β-	k	0. 0027 0020±0. 0011 0006	0.00390040±0.00110006	0.00890086±0.00130006	0.01840189±0.00030011		
	carotene	R^2	0.634±0.282 0.589	0.869±0.043 0.769	0.896±0.079 0.939	0.934±0.020 0.930		
		р	0.016*	<u><0.0001*</u>	<u><0.0001*</u>	<u><0.0001*</u>		
	9-cis-β-	k	0. 0030 0023±0. 0014 0008	0.00400038±0.00100008	0. 0085 0080±0. 0010 0005	0.0170±0. 0003 0010		
RPG	carotene	R^2	0.679±0.226 0.516	0.837±0.058 0.641	0.910±0.061 0.937	0.935±0.018 0.926		
		р	0.029*	0.0001*	<0.0001*	<0.0001*		
	Trans α- carotene	k	0.0037±0.0010	0.0049±0.0009	0.0084±0.0009	0.0132±0.0006		
	curotone	R^2	0.761±0.357	0.883±0.120	0.911±0.103	0.918±0.001		

k was the slope on the logarithmic carotenoid concentration (Y-axis) vs storage time (X-axis) graph and was obtained by linear regression.-

First order equation:


 $\ln C = \ln C_0 - kt$

Where: C: Carotenoid content of gari (µg.g⁻¹) at storage time t; C₀: Carotenoid content of food (µg.g-1) at initial time (before storage); t: storage time (day); k: degradation constant rate (day-1).

Formatted: Superscript

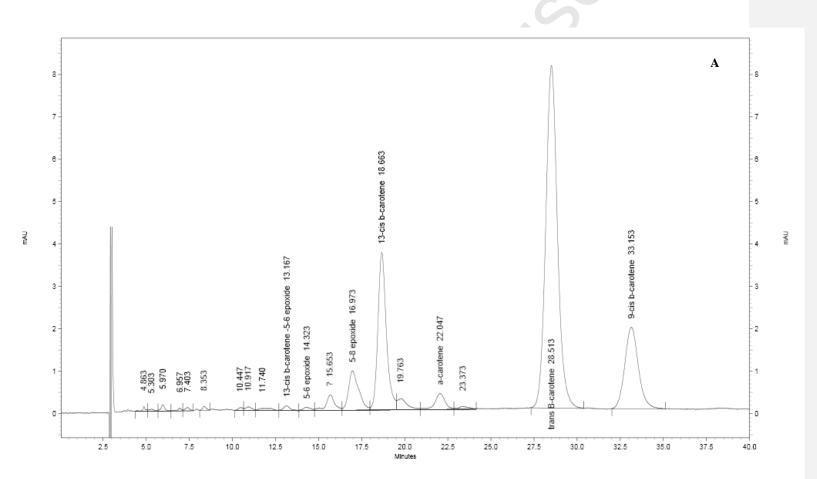
* indicate a significant correlation at p<0.05 (linear regression; XLSTAT 2014).

Table 3. Parameters of the Arrhenius^a and Eyring^b-models for the carotenoids degradation in gari on a fresh weight basis between 19-40°C and maintained at constant humidity ($a_w = 0.5$ for NaBr) in gari made from yellow cassava (BG) (A)-and from white cassava with palm oil (RPG)

^aArrhenius model

 $k = k_{\infty} e^{-\frac{m}{RT}}$ Where: T : temperature (K); k: degradation rate constant at T (day⁻¹); k_{\infty}: value of k at T = ∞ (day⁻¹); Ea: Activation energy (kJ.mol⁻¹); R: gas constant = 8.314 J · K⁻¹ · mol⁻¹

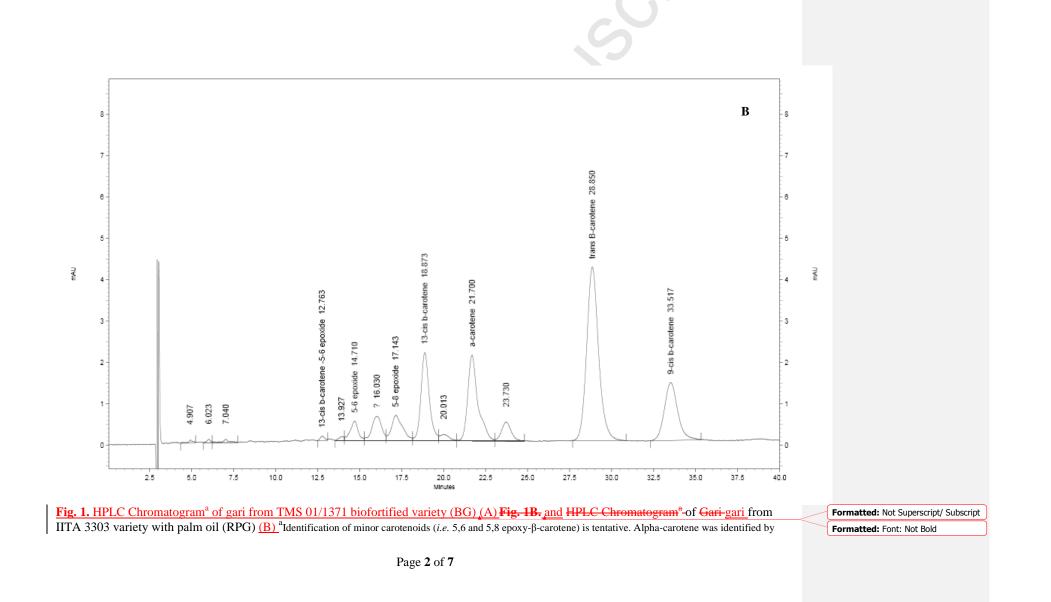
^bEyring model

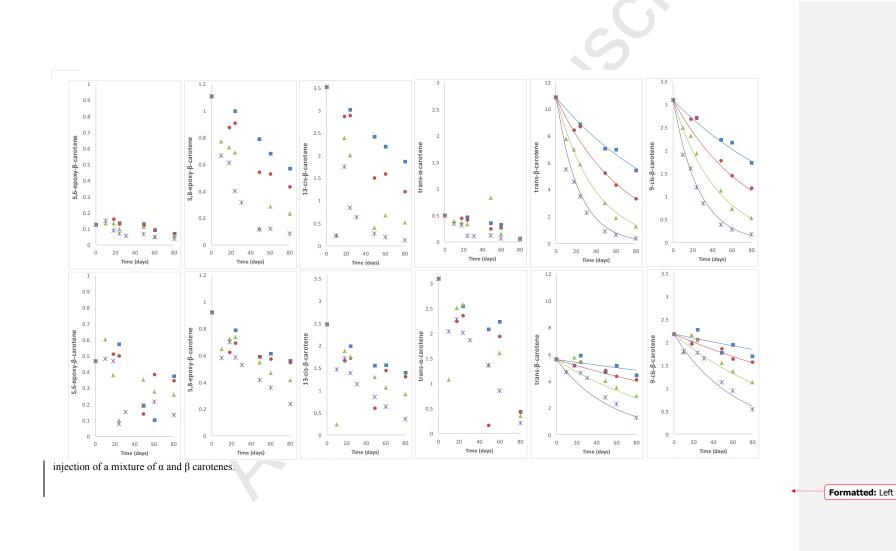

 $k = \frac{k_B}{h}T \cdot e^{-\frac{\Delta H^* - T\Delta S^*}{RT}}$ Where: k_B : Boltzmann constant = 1.381-10⁻²³ J.K⁺; h: Planck constant = 6.626-10⁻²⁴ J.s; ΔH^* : activation enthalpy (kJ.mol⁺); ΔS^* : activation entropy (J.mol⁺,K⁺)

R²: Coefficient of determination.

Mean of triplicate determinations ± standard deviationerror (linear regression; XLSTAT 2014). Yellow cassava 01/1371 (YEBC); White cassava IITA 3303 with added palm oil (Po-WERPG).

* indicate a significant difference between BG and RPG at p<0.05 (One Way ANOVAT-test).


Formatted Table



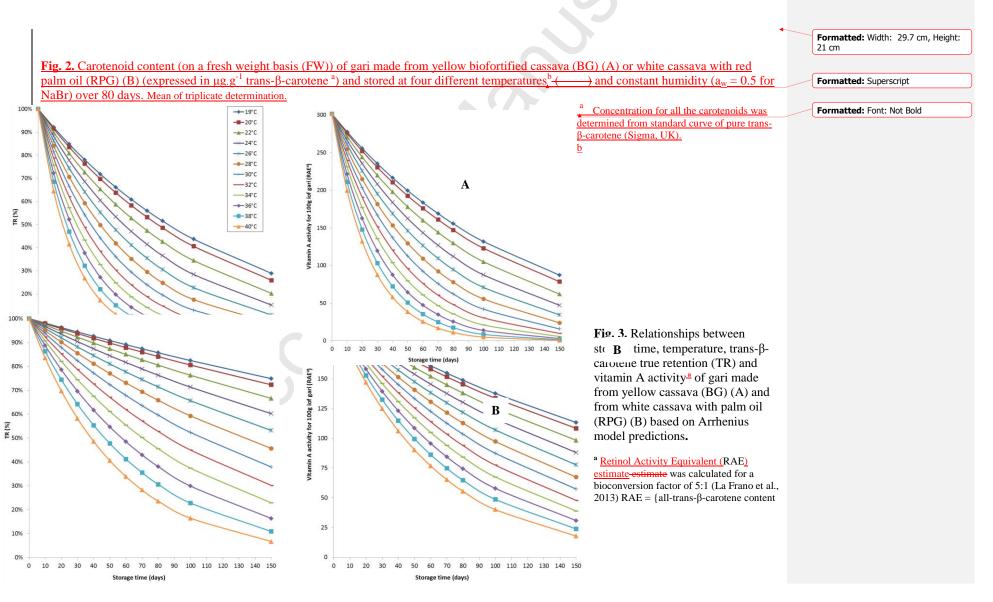


Fig. 2. Carotenoid content (on a fresh weight basis (FW)) of gari made from yellow biofortified cassava (BG) (A) or white cassava with red palm oil (RPG) (B) (μ g.g⁻¹) and stored at four different temperatures () and constant humidity (a_w = 19°C • 26°C $A33°C \times 40°C = 0.5$ for NaBr) over 80 days.

Mean of triplicate determination

Page **4** of **7**

Α

 $/5 + \text{minor }\beta\text{-carotene content}/ 10\} x unit (g).$

Page 6 of 7

Page 7 of 7

Highlights

- Trans-β-carotene degradation was modelled during storage of BG and RPG
- Trans and 9-cis β-carotene degradation fitted well the Arrhenius and Eyring models
- Initial trans- β -carotene was twice as high in the BG compared to RPG
- Activation energy was lower (~20%) with BG compared to RPG
- Based on carotenoid stability, shelf life of BG was much shorter than RPG

A Cooler and a coo