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Abstract: Insulin (Humulin® R IU500) has been delivered from an implantable artificial pancreas in
diabetic rats and pigs. The artificial pancreas which was implanted in the peritoneum was fabricated
from several biocompatible materials such as polycarbonate, stainless steel, polyurethane, titanium
and a polyurethane resin. The device also contains a glucose responsive smart gel which controls the
diffusion of insulin dependent on the surrounding glucose environment. As the insulin reservoir is
refillable and in contact with the device materials, assessing its biocompatibility with these various
device component materials was conducted. Insulin can undergo chemical degradation mainly
via a deamidation reaction on glutamine and asparagine residues rendering its biological hormone
functionality. Two Reverse Phase High Performance Liquid Chromatography (RP-HPLC) methods
were developed and validated for detection of insulin and degradant Asn A21 desamido insulin
(method A) and insulin and degradant Asn B3 desamido insulin (method B). Material biocompatibility
studies show that stainless steel and titanium are suitable for an implantable insulin delivery device
design over a 31-day period. The use of polycarbonate and polyurethane could be considered if the
insulin reservoir in the device was only to remain in the device for less than 11 days after which time
there is a loss in cresol which acts in a protective capacity for insulin stability.

Keywords: reverse phase HPLC; recombinant human insulin; validation; desamido insulin; insulin
stability; Humulin® R

1. Introduction

The stability of an insulin solution can be significantly reduced by a number of chemical changes
to its primary structure which result in insulin derivatives with modified secondary and quaternary
structures resulting in denaturation, aggregation, and precipitation. This leads to drastic reductions in
the hormone’s biological functionality posing serious problems for its use in drug delivery systems [1–6].

During storage and use, insulin deteriorates via two main chemical reactions: deamidation from
hydrolysis and polymerisation from the formation of intermolecular covalent bonds with other insulin
molecules to form higher molecular weight transformation products [6,7]. Deamidation is a reaction
in which the side chain group in glutaminyl or asparaginyl residues is hydrolysed to form a free
carboxylic acid. The six residues in insulin which pose as potential deamidation sites are GlnA5,
GlnA15, AsnA18, AsnA21, AsnB3 and GlnB4. The asparagine (Asn) residues are more prone to
deamidation than glutamine (Gln) residues. Deamidation products essentially retain native activity
and are not associated with adverse immunogenicity [6]. In acidic solutions (pH <2) direct hydrolysis
of the side chain amide leads to deamidation at AsnA21 and forms A21 desamido insulin [8]. This
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alters the charge and hydrophilic/hydrophobic properties of insulin which are the key forces controlling
its tertiary structure and responsible for its biological functionality. However, in neutral solutions,
deamidation primarily occurs at residue AsnB3 but at a reduced rate. Deamidation of AsnB3 and
hydrolysis of the peptide bond between residues A8 and A9 contribute to formation of a mixture of
iso-asparate (isoAsp) and asparate (Asp) derivatives (B3 desamido insulin) [9,10].

Reversed phase high performance liquid chromatography (RP-HPLC) has been widely used to
develop and validate simple specific methods with short run times for the determination of insulin
in biological environments [11–14]. The British Pharmacopoeia official monographs [15] highlight a
HPLC method for the assay of human insulin and A21 desamido insulin utilising a gradient method
with a run time of 50 min, whilst the United States Pharmacopoeia [16] describes a method for similar
analysis at a longer run time of 90 min. A RP-HPLC method described by Oliva et al. [17] for the
analysis and characterisation of a rapid acting insulin (Novo Nordisk®) and its degradation products in
pharmaceutical preparations was able to detect A21 desamido insulin when formulations were stored
at 60 ◦C with shaking. However, B3 degradants were detected for samples stored at 50 ◦C without
shaking. The validation studies carried in this study were also performed using pure crystalline insulin
and not the pharmaceutical preparations where A21 and B3 degradants were detected. However, as
both degradation products are formed as a function of the pH environment a single HPLC method
which has been able to capture both degradation products remains elusive. An isocratic HPLC method
reported by Moslemi et al. [18] detected A21 desamido insulin prepared by storing human insulin
in 0.01 M HCl at 40 ◦C for 48 h with the peak appearing close to the human insulin peak but not
B3 degradants.

The aim of this work was to develop and validate two RP-HPLC methods at acidic and neutral
pH for the quantification of insulin and A21 and B3 desamido insulin degradants in accordance with
United States Food and Drug Administration (FDA) -approved methodology [19]. Both RP-HPLC
methods were subjected to an assessment of selectivity, system suitability, linearity, accuracy, precision,
sensitivity and stability for the quantification of insulin and A21 and B3 desamido insulin degradants,
respectively, using Humulin® R (Hum R) and not a pure crystalline insulin as with Oliva et al. [17].

A further objective was to assess insulin stability and compatibility with materials that form part
of the implantable closed-loop insulin delivery device (artificial pancreas), InSmart (Figure 1a).
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Figure 1. (a) Artificial pancreas (InSmart). (b) Mechanism for insulin delivery from artificial
pancreas (InSmart).

Briefly, the InSmart device is a peritoneally implantable device under development for the delivery
of insulin for type 1 insulin-dependent diabetes patients. The device is composed of a smart biopolymer
which is able to undergo a viscoelastic response to glucose allowing insulin to be delivered at a rate
allowing the patient to remain close to normoglycaemia (Figure 1b).

Currently the InSmart device containing smart biopolymer gel has been able to control the blood
glucose of a diabetic pig for five weeks during which the diabetic pig was subjected to several high
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concentration glucose challenges which allowed a faster output of Hum R to bring the blood glucose
of the diabetic pig to near normoglycaemia [20]. Hum R is five times more potent than other insulin
formulations which are typically 100 IU. Its use in this device allowed for a high concentration depot so
that the device would not need refilling on a more frequent basis. The smart biopolymer and InSmart
rigid device are composed of parts made from polycarbonate (a thermoplastic polymer containing
monomer bisphenol A) and stainless steel (Grade 316), polyurethane (a long chain thermoplastic
polymer made up of polyol and isocyanate mixed), titanium (99.99% purity) and resin (a polyurethane
two-part thermosetting resin made of polyol and isocyanate mixed) which are all potential materials
of interest in future device designs. The material compatibility study was therefore conducted with
Hum R which it was reasoned would give valuable information with regard to selection of material for
future design as it is the insulin which would be utilised in such a device.

2. Experimental

2.1. Chemicals and Materials

Humulin® R (Hum R) 500 IU/mL manufactured by Eli Lilly and Co was used. It has a composition
of 500 IU/mL insulin, 2.5 mg/mL meta-cresol and 16 mg/mL glycerine, as well as zinc oxide to
supplement the endogenous zinc to obtain a total zinc content of 0.017 mg/100 units, and water for
injection. The pH (reported as between 7.0 and 7.8) was adjusted to 7.4. Diluting fluid manufactured
by Novo Nordisk was used. HPLC grade acetonitrile, sodium dihydrogen phosphate, disodium
hydrogen phosphate, ortho-phosphoric acid and ethanolamine were purchased from Fischer Chemicals
(Loughborough, UK). Nylon membrane filters, 0.45 µm, 47 mm were purchased from Whatman
International Ltd. (UK). Distilled water was used throughout.

Clear 1.8 mL vials (E-C sample Wheaton 33 low extractable borosilicate glass 12 × 35 mm
dia. x ht (cap on) 8–425 screw cap size) with septum top, rubber lined black cap (Fisher Scientific,
Loughborough, UK) was used. Machined material samples of polycarbonate (a thermoplastic polymer
containing monomer bisphenol A) (PC), polyurethane (a long chain thermoplastic polymer made up
of polyol and isocyanate mixed) (PU), resin (a polyurethane two part thermosetting resin made of
polyol and isocyanate mixed) (R) and stainless steel (Grade 316) (SS) were acquired from Renfrew
Group (Renfrew Group International, Leicester, UK). These were rounded rods with a diameter of
2.8 ± 0.2 mm and height of 44 ± 1 mm with polish and finish matching those on the device. Titanium
wire (Ti) manufactured by Sigma Aldrich (Saint Louis, MO, USA) was 0.5 mm diameter, 99.99% and
50 cm wire was used. These were cut to size to fit the sample bottles.

2.2. Preparation of Humulin R Standards

Hum R standard solutions from 50 to 500 IU/mL (50, 100, 150, 200, 250, 300, 350, 400, 450,
500 IU/mL) were prepared by dilution of the standard stock solution with diluting fluid. A calibration
graph was constructed in the range of 50 to 500 IU/mL Hum R (n = 6).

2.3. Material Compatibility Experimental Set-Up and Method

Rods of the differing materials were secured into sample bottles by inserting through the septum
present in the lids. Then, 1 mL of Hum R was placed in 2 mL test sample bottles each with PC, PU,
R, SS rod and Ti wire. In addition, Hum R was placed in sample bottles without test materials as
control standards. The test sample bottles were stored at 20 ◦C and 37 ◦C. Three sets of sample bottles
with each material rod (3 × 10 sample bottles) were set up to provide for the two RP-HPLC methods.
Sampling was performed after 0.083 (2 h), 1, 3, 7, 11, 21 and 31 days and analysed by RP-HPLC. For the
Hum R samples, RP-HPLC acidic analytical method A was used in order to determine the amount
of insulin remaining in the sample and to assess the amount of A21 desamido insulin degradant.
The RP-HPLC neutral analytical method B was used to determine the amount of insulin remaining
in the sample and to assess the amount of B3 desamido insulin degradant. In addition, the recovery
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of meta-cresol (m-cresol) in the Hum R samples was determined. Insulin and m-cresol recovery was
determined by comparison with control samples stored at 20 ◦C without the test material rods. A
calibration curve using the control samples was generated at each time point.

2.4. Methods RP-HPLC Chromatographic System

Chromatographic analyses were performed using a Shimadzu Prominence HPLC system consisting
of an in-line DGU-20AS Prominence degasser, LC-20AD Prominence quaternary pump, SIL-20A
Prominence auto sampler, CTO-20AC Prominence column oven and SPD-M20A Prominence diode
array detector.

2.5. Analytical Method A for Determination of Insulin and A21 Desamido Insulin Degradant

A Jupiter 5µC18 300 Å, 250× 4.6 mm column (Phenomenex, Cheshire, UK) was used for separation
preceded by a 0.5 mm in-line filter and a widepore C18 4 × 3 mm guard column. For detection of Hum
R and Asn A21 desamido insulin degradant an acidic mobile phase was used, consisting of 74:26 (v/v)
aqueous sodium sulphate pH 2.3 (adjusted with ethanolamine):acetonitrile. The buffer was filtered
through a nylon membrane of 0.45 µm pore size. Elution was isocratic with a flow rate of 1.5 mL/min,
a column temperature of 40 ◦C and sample injection of 20 µL. The detector was set to scan from 190 to
400 nm and had a channel set at 215 nm to detect Hum R and its degradation products.

2.6. Analytical Method B for the Determination of Insulin and B3 Desamido Insulin Degradant

All conditions used for method A were replicated except the mobile phase which consisted of
73:27 (v/v) 0.1 M sodium phosphate buffer pH 7.4:acetonitrile.

2.7. Validation Procedures

Table 1 shows the qualification parameters assessed for methods A and B.

Table 1. Validation procedures.

Parameter Sample Criteria

Selectivity/specificity
Samples of diluting fluid containing the

same excipients as Humulin® R (Hum R),
except human insulin

There should be no peaks present in
diluting fluid interfering with the peak

area response from Hum R and desamido
insulin degradants

System suitability n = 6 samples analysed at a selected
concentration

An acceptance criterion of ±2% for
percent relative standard deviation

(%RSD) for the peak areas and retention
times (Rt) for Hum R

Linearity
Minimum 5-point curve generated over

range (50–500 IU/mL). Six replicate
experiments run

R2
≥ 0.990

Accuracy n = 4 samples (×3) analysed at different
concentrations

Determined concentration at each level
must be 97.0%–103.0% of theoretical

concentration

Precision/repeatability
intra-day

n = 4 samples (×3) analysed at different
concentrations %RSD at each level ≤3.0%

Inter-day n = 4 samples (×3) analysed at different
concentrations %RSD at each level ≤3.0%

LOD and LOQ
Regression data from linearity studies used

LOD = 3.3σ
S ; LOQ = 10σ

S
Report LOD and LOQ results

Sample stability Sample stability to be assessed over a
31-day period

Sample preparations must be within
98.0%–102.0% of the initial concentration

upon reanalysis
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3. Results and Discussion

3.1. Selectivity/Specificity

The developed RP-HPLC analytical method A under chromatographic conditions achieved a run
time of 30 min with elution of Hum R insulin at retention time (Rt) 13.3 min, m-cresol at Rt 5.6 min and
degradation product A21 desamido insulin at Rt 24.1 min.

For RP-HPLC analytical method B a similar run time of 30 min was used and elution of Hum R
insulin had a Rt of 16.6 min, m-cresol at Rt 5.4 min and degradation product B3 desamido insulin at
Rt 12.6 min and 13.4 min. Comparison of chromatograms of placebo and Hum R for both methods
revealed no additional peaks co-eluting with the peaks of Hum R and its degradation products.

3.2. System Suitability

System suitability for method A with 200 IU/mL Hum R showed a Rt of 13.3 min for A21 with a
%RSD = 0.41 (n = 6). For method B with 250 IU/mL Hum R a Rt of 16.6 min with a %RSD of 1.49 (n = 6)
was observed. %RSD for peak areas were found to be 0.41 and 0.45, respectively. Both methods were
within the ±2% acceptance criteria indicating suitability of the corresponding system. The capacity
factor and resolution were both >2 and the tailing factor <2 which was within accepted the criteria.

3.3. Linearity

A linear relationship between AUP and insulin concentration over the concentration range
50–500 IU/mL for method A (slope 387,831 ± 8986; intercept 2,089,296 ± 1,506,488; R2 = 0.9966) and for
method B (slope 379,847 ± 1620; intercept 4,513,995 ± 423,999; R2 = 0.9956) was observed.

3.4. Accuracy

Accuracy was studied using two different sets of four solutions of concentration 150, 200, 250 and
500 IU/mL Hum R for method A and 150, 200, 300 and 400 IU/mL Hum R for method B. The recovery
was 100.48 ± 0.63% and 101.27 ± 1.46% for Hum R for methods A and B using corresponding AUPs to
insulin concentrations.

3.5. Precision

Table 2 shows precision data for Hum R samples during intra- and inter-day runs for methods A
and B. The %RSD for intra-day precision was ≤1.01 and inter-day precision was ≤0.75 for method A;
the intra-day precision was ≤0.74 and inter-day precision was ≤0.30 for method B. The two methods
showed suitable repeatability and intermediate precision.

Table 2. Precision for determination of insulin in Hum R for methods A and B.

Method A

Std conc. Intra-Day Inter-Day Overall RSD

IU/mL AUP Mean ± SD %RSD AUP Mean ± SD %RSD %
200 80,511,102 ± 8,10,141 1.01 81,130,312 ± 321,212 0.40 0.80
300 114,116,991 ± 502,655 0.44 114,648,789 ± 310,602 0.27 0.41
500 197,502,242 ± 1,337,885 0.68 197,061,936 ± 1,478,956 0.75 0.65

Method B

100 45,340,751 ± 79,090 0.17 44,156,436 ± 133,078 0.30 1.47
200 82,944,396 ± 184,091 0.22 86,743,903 ± 37,292 0.04 2.46
400 156,927,295 ± 1,166,927 0.74 162,635,381 ± 141,610 0.09 2.01
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3.6. Detection and Quantitation Limits (Sensitivity)

LOD and LOQ were calculated based on the standard deviation from the AUP for the lowest
concentration used in linearity studies as well as the slope of the calibration curve. The LOD and
LOQ for Hum R for method A was 0.79 and 2.41 IU/mL, respectively, and for method B was 0.98 and
2.97 IU/mL, respectively. The results thus demonstrate the sensitivity of the two methods.

3.7. Hum R Stability

Table 3 shows that insulin stability determined by comparing Hum R 400 IU and 500 IU at 20 ◦C
over 31 days was within the criteria highlighted in Table 1 and that in the absence of any materials
was stable.

Table 3. Stability data for Hum R insulin samples stored at 20 ◦C for 31 days using methods A and B.

Time After Preparation (Days) Method A

Hum R 500 IU/mL Hum R 400 IU/mL

Concentration (IU/mL) Concentration % Concentration (IU/mL) Concentration %

Fresh 494.25 100.00 401.16 100.00
1 491.87 99.52 400.88 99.93
3 492.93 99.73 401.10 99.99
7 492.64 99.67 400.15 99.75

11 491.63 99.47 400.77 99.90
31 497.35 100.63 398.16 99.25

Method B

Fresh 500.87 100.00 400.58 100.00
1 499.09 99.64 399.63 99.76
3 499.62 99.75 400.61 100.01
7 502.49 100.32 399.66 99.77

11 502.59 100.35 403.72 100.78
31 501.81 100.19 399.18 99.65

3.8. Effect on Insulin Recovery over Time

The Hum R insulin recovery values were normalised over the entire time period based on the
values observed from the initial time point. The Hum R recovery results for solutions in contact with
PC, R, SS and Ti show negligible loss of Hum R after 31 days at 20 ◦C (Figure 2a). However, PU showed
a loss of ~74% after 31 days at 20 ◦C. At 37 ◦C, solutions in contact with Ti showed negligible loss of
Hum R, with SS showing a loss of ~7%, R showing ~16%, PC showing ~67% and PU showing complete
loss of Hum R after 31 days (Figure 2b).
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A. PC: polycarbonate; PU: polyurethane; R: resin.

Figure 3a shows solutions in contact with PC and Ti had a negligible loss of Hum R after 31 days
at 20 ◦C. However, R showed a loss of ~25%, SS showed a loss of ~15% and PU showed a loss of
~82% after 31 days at 20 ◦C. At 37 ◦C, solutions in contact with PC and Ti showed negligible loss of
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Hum R, with SS and R showing a loss of ~22% and PU showing complete loss of Hum R after 31 days
(Figure 3b). The insulin recovery results suggest that at 20 ◦C Hum R solution is compatible with PC
and Ti for up to 31 days and with R and SS up to 21 days. At 37 ◦C Hum R solution is compatible with
Ti for up to 31 days, with SS for up to 21 days and PC and R up to 11 days. The results indicate that PU
looks like the least compatible of all the materials.
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3.9. Formation of A21 and B3 Desamido Insulin over Time

3.9.1. A21 Desamido Insulin

Low levels of A21 desamido insulin were observed over time for all materials at 20 ◦C and 37 ◦C
(Table 4); the maximum values observed were well below Pharmacopoeia [15] specified limits for
insulin preparations of not more than 5% of total area of peaks. The maximum levels observed over
31 days at 20 ◦C was with R (0.34%) and the maximum levels observed at 37 ◦C was with SS and
Ti (0.49%).

Table 4. A21 desamido insulin formed over time at 20 ◦C and 37 ◦C as a percentage of the total insulin
peak area for method A.

Time (days) SS 20 ◦C SS 37 ◦C Ti 20 ◦C Ti 37 ◦C PU 20 ◦C PU 37 ◦C PC 20 ◦C PC 37 ◦C R 20 ◦C R 37 ◦C

0.08 0.11 0.12 0.11 0.12 0.11 0.12 0.12 0.12 0.11 0.12
1 0.09 0.10 0.09 0.10 0.09 0.11 0.09 0.10 0.11 0.13
3 0.09 0.12 0.09 0.11 0.13 0.19 0.09 0.12 0.13 0.19
7 0.11 0.17 0.10 0.11 0.16 0.05 0.06 0.04 0.02 0.05
11 0.10 0.19 0.07 0.20 0.15 0.09 0.10 0.20 0.06 0.21
21 0.11 0.32 0.12 0.33 0.04 0.04 0.13 0.25 0.10 0.22
31 0.16 0.45 0.14 0.47 0.10 0.00 0.18 0.00 0.34 0.30

3.9.2. B3 Desamido Insulin

The levels of B3 desamido insulin formed are as presented in Table 5. Formation of B3 desamido
insulin is largely unaffected by any of the materials at 20 ◦C and 37 ◦C except for R, which shows an
increase after three days. Polycarbonate seems to contribute to the formation of B3 desamido insulin
after 21 days at 37 ◦C. For all materials, except R (maximum level was 7.5%), the B3 desamido insulin
values observed were below the Pharmacopoeia [15] specified limit which states that all other peaks
(other than A21and insulin peak) should not be more than 6%.
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Table 5. B3 desamido insulin (iso-asparate (isoAsp) and asparate (Asp)) formed over time at 20 ◦C and
37 ◦C as a percentage of the total insulin peak area for method B.

Time (days) SS 20 ◦C SS 37 ◦C Ti 20 ◦C Ti 37 ◦C PU 20 ◦C PU 37 ◦C PC 20 ◦C PC 37 ◦C R 20 ◦C R 37 ◦C

0.08 2.30 2.37 2.34 2.33 2.33 2.34 2.33 2.35 1.91 2.39
1 2.04 2.10 2.01 2.08 2.01 2.05 2.12 2.03 2.06 2.08
3 2.08 2.18 2.19 2.25 2.07 2.15 2.16 2.07 2.14 2.34
7 2.13 2.42 2.28 2.43 1.86 2.36 2.27 2.49 2.42 3.07
11 1.70 2.15 1.54 1.50 1.32 1.06 1.69 1.94 2.17 4.26
21 1.58 1.99 1.61 1.99 1.41 0.09 1.58 0.09 4.56 7.01
31 1.39 2.11 1.55 2.11 0.75 0.31 1.53 5.29 2.67 7.43

3.10. Effect on M-Cresol Recovery over Time

The m-cresol recovery values were normalised over the entire time period based on values
observed at initial time point. The m-cresol recovery levels from the Hum R solutions with the test
materials over 31 days at 20 ◦C and 37 ◦C are presented in Figure 4a,b.
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Figure 4. (a) m-Cresol recovery over time for each test material at 20 ◦C and (b) 37 ◦C using analytical
method A.

Hum R solutions in contact with all five materials show loss of m-cresol over the 31-day test
period at 20 ◦C and 37 ◦C. At 20 ◦C, solutions with Ti showed the least loss of m-cresol, with PU and R
showing a loss of ~56% and SS and PC showing a loss of ~28% after 31 days. At 37 ◦C, solutions with
Ti showed the least loss of m-cresol, with PC, PU and R showing a loss of ~74% and SS showing a loss
of ~45% after 31 days. Comparison of the Hum R and m-cresol recovery trends reveal that recovery of
m-cresol decreases with increase in loss of Hum R at 20 ◦C and 37 ◦C.

Combining all findings from Hum R recovery, m-cresol recovery, formation of A21 and B3
desamido insulin the following conclusions can be made for the materials tested:

PC: Hum R was found to be compatible with PC at 20 ◦C with negligible loss of insulin and very
low levels of desamido insulin degradants formed though there was some loss of m-cresol observed.
At 37 ◦C there appears to be insulin loss after 11 days (using method A) which was proportional to
m-cresol loss observed after 11 days, here the insulin loss can be linked to the loss of protection of the
insulin molecule by m-cresol and not the formation of degradants.

SS and Ti: At 20 ◦C and 37 ◦C, the Hum R solutions were compatible over 31 days with low levels
of desamido insulin degradants observed and some loss in insulin observed for SS at 37 ◦C after 21
days can be linked to loss in m-cresol observed.

PU: Hum R loss from 11 days at 20 ◦C and 3 days at 37 ◦C. This loss in insulin was due to loss of
protection by m-cresol observed and not due to formation of the desamido insulin degradants as very
low levels of these were observed.

R: Hum R loss was less than compared to other materials. The m-cresol loss is linked to higher
levels of B3 (>7%) formed.
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4. Conclusions

• The validation capabilities, selectivity, system suitability, linearity, range, accuracy, precision,
detection and quantitation limits determined for the two RP-HPLC methods were assessed based
on the FDA guidelines. The RP-HPLC acidic and neutral analytical methods can be used to detect
and quantify insulin and two of its main deamidation degradants.

• The validation studies have demonstrated the suitability of the two methods for the determination
of insulin and its degradants with reduced analysis times and with accuracy across the
concentration ranges intended to be studied for the InSmart device material compatibility studies.

• The objective of the compatibility studies was to investigate insulin stability and compatibility
with materials that formed part of an implantable insulin delivery device or have a potential to be
considered for use in future device designs. The main conclusions from the material compatibility
studies show that SS and Ti are suitable for device design. The use of PC and PU could also be
considered if the insulin reservoir in the device was only to remain in the device for less than
11 days after which time there is loss in cresol which acts as in a protecting capacity for insulin
stability. As the insulin reservoir in the device would be refillable these materials could also be
considered suitably biocompatible candidates for device incorporation. Resin was found to be
wholly unsuitable a device material.
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