285 research outputs found

    APC (adenomatous polyposis coli)

    Get PDF
    Review on APC (adenomatous polyposis coli), with data on DNA, on the protein encoded, and where the gene is implicated

    Taxol-Stabilized Microtubules Can Position the Cytokinetic Furrow in Mammalian Cells

    Get PDF
    How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation

    Migration and actin protrusion in melanoma cells are regulated by EB1 protein

    Get PDF
    Author Posting. Β© The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Cancer Letters 284 (2009): 30-36, doi:10.1016/j.canlet.2009.04.007.Remodeling of actin and microtubule cytoskeletons is thought to be coupled; however, the interplay between these two systems is not fully understood. We show a microtubule end-binding protein, EB1, is required for formation of polarized morphology and motility of melanoma cells. EB1 depletion decreased lamellipodia protrusion, and resulted in loss of opposed protruding and retracting cell edges. Lamellipodia attenuation correlated with mis-localization of filopodia throughout the cell and decreased Arp3 localization. EB1-depleted cells displayed less persistent migration and reduced velocity in singlecell motility experiments. We propose EB1 coordinates melanoma cell migration through regulating the balance between lamellipodial and filopodial protrusion.This work was supported by American Heart Association grant 0525660Z (J.M.S.) and Southern Illinois University Edwardsville FUR grant

    Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila

    Get PDF
    Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells

    Mammalian end binding proteins control persistent microtubule growth

    Get PDF
    Β© 2009 Komarova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0. The definitive version was published in Journal of Cell Biology 184 (2009): 691-706, doi:10.1083/jcb.200807179.End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Furthermore, we demonstrated in vitro and in cells that the EB plus-end tracking behavior depends on the calponin homology domain but does not require dimer formation. In contrast, dimerization is necessary for the EB anti-catastrophe activity in cells; this explains why the EB1 dimerization domain, which disrupts native EB dimers, exhibits a dominant-negative effect. When microtubule dynamics is reconstituted with purified tubulin, EBs promote rather than inhibit catastrophes, suggesting that in cells EBs prevent catastrophes by counteracting other microtubule regulators. This probably occurs through their action on microtubule ends, because catastrophe suppression does not require the EB domains needed for binding to known EB partners.This work was supported by the Netherlands Organization for Scientifi c Research grants to A.A., by Funda Γ§ Γ£ o para a Ci Γͺ ncia e a Tecnologia fellowship to S.M. Gouveia, by a FEBS fellowship to R.M. Buey, by the National Institutes of Health grant GM25062 to G.G. Borisy and by the Swiss National Science Foundation through grant 3100A0-109423 and by the National Center of Competence in Research Structural Biology program to M.O. Steinmetz

    Microtubule-severing enzymes: From cellular functions to molecular mechanism.

    Get PDF
    Microtubule-severing enzymes generate internal breaks in microtubules. They are conserved in eukaryotes from ciliates to mammals, and their function is important in diverse cellular processes ranging from cilia biogenesis to cell division, phototropism, and neurogenesis. Their mutation leads to neurodegenerative and neurodevelopmental disorders in humans. All three known microtubule-severing enzymes, katanin, spastin, and fidgetin, are members of the meiotic subfamily of AAA ATPases that also includes VPS4, which disassembles ESCRTIII polymers. Despite their conservation and importance to cell physiology, the cellular and molecular mechanisms of action of microtubule-severing enzymes are not well understood. Here we review a subset of cellular processes that require microtubule-severing enzymes as well as recent advances in understanding their structure, biophysical mechanism, and regulation

    Kebab: Kinetochore and EB1 Associated Basic Protein That Dynamically Changes Its Localisation during Drosophila Mitosis

    Get PDF
    Microtubule plus ends are dynamic ends that interact with other cellular structures. Microtubule plus end tracking proteins are considered to play important roles in the regulation of microtubule plus ends. Recent studies revealed that EB1 is the central regulator for microtubule plus end tracking proteins by recruiting them to microtubule plus ends through direct interaction. Here we report the identification of a novel Drosophila protein, which we call Kebab (kinetochore and EB1 associated basic protein), through in vitro expression screening for EB1-interacting proteins. Kebab fused to GFP shows a novel pattern of dynamic localisation in mitosis. It localises to kinetochores weakly in metaphase and accumulates progressively during anaphase. In telophase, it associates with microtubules in central-spindle and centrosomal regions. The localisation to kinetochores depends on microtubules. The protein has a domain most similar to the atypical CH domain of Ndc80, and a coiled-coil domain. The interaction with EB1 is mediated by two SxIP motifs but is not required for the localisation. Depletion of Kebab in cultured cells by RNA interference did not show obvious defects in mitotic progression or microtubule organisation. Generation of mutants lacking the kebab gene indicated that Kebab is dispensable for viability and fertility
    • …
    corecore