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Kank Is an EB1 Interacting Protein that Localises to
Muscle-Tendon Attachment Sites in Drosophila
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Abstract

Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in
the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate
microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank
proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells.
Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in
cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank
localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases
during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank
deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis
showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank
orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells.
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Introduction

Microtubules are dynamic polar polymers that perform vital

functions in eukaryotic cells. The microtubule network constantly

alters its dynamics and organisation according to the requirements

of the cell, for example forming the spindle during cell division and

forming a network which structurally supports the cell. These

changes are mainly regulated by proteins that interact with

microtubules, collectively called microtubule-associated proteins

(MAPs) [1]. MAPs are a wide range of proteins with diverse

structures and functions. So far, it has been a challenge to identify

the molecular basis of tissue specific microtubule dynamics and

organisation during development.

A subset of MAPs associate with growing ends of microtubules.

EB1 is highly conserved from humans to yeast and has been shown

to be necessary for dynamics at plus-ends [2,3]. This protein was

originally identified as a binding partner of APC (adenomatous

polyposis coli) [4] and was later shown to track growing

microtubule plus ends in cells [5]. It has been shown that EB1

plays a central role in regulation at microtubule plus ends [6], as it

can bind microtubule plus ends directly [7] and can recruit various

proteins with a range of structures and functions. Two sequence

motifs have been identified which mediate the interaction with

EB1, namely the CAP-Gly domain and the SxIP motif [8–10].

Although many studies on EB1 have been carried out in

cultured cells, understanding of the roles and actions of EB1 are

limited in the context of the whole organism. EB1 may regulate

microtubule plus end behaviour differently in different cell types,

as it recruits cell type specific effectors to microtubule plus ends.

Systematic identification of EB1 interacting proteins has been

carried out using mass-spectrometry [10,11], but the choice of

starting materials limits which proteins can be identified.

Identification of EB1-interacting proteins differentially expressed

in different tissues, such as muscle and the epidermis, will be a key

step to determining how microtubule ends are regulated in

different cell types.

In this study we identify the sole Drosophila orthologue of

human Kank1–4 as an EB1-interacting protein, found to localise

predominantly at sites of muscle-tendon attachment. The

conserved protein Kank1 was identified as a human tumour

suppressor [12], though exactly how it suppreses tumour growth

remains unclear. So far, investigation of the mammalian Kank

proteins has been carried out primarily in cell culture and they

have been shown to have roles in inhibition of actin nucleation,

actin organisation [13,14], cell polarity [15] and cell growth [16].

A study in C. elegans shows that the sole Kank orthologue, VAB-

19, localises to epidermal attachment structures between muscle

and epidermal cells in developing nematode embryos, and later at

circumferential bands that cover the length of the worm [17].

Disruption of VAB-19 during development is lethal, likely
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resulting from the detachment of muscles from the epidermis

during elongation.

Drosophila, like C. elegans, contains a single Kank orthologue,

CG10249, which we will call Kank in this report. Kank has not

been studied in detail, however recent studies have indicated a role

for Kank in neurogenesis and development [18–20].

Here we report on the identification of Drosophila Kank as a

novel EB1-interacting protein with a specific localisation during

embryogenesis. We demonstrate that Kank interacts with EB1 in

S2 cells and requires EB1 for localisation to microtubule ends.

Furthermore, we show that this interaction with EB1 is through an

SxIP motif present in Kank. Additionally, we establish that Kank

is expressed at most stages of the Drosophila lifecycle and its

expression increases during embryonic development. Complete

deletion of Kank coding sequence from the genome shows that

Kank is dispensable for viability and fertility. We observe that

Kank specifically localises to sites of attachment between muscle

and tendon cells in embryos, suggesting a potential role in muscle-

tendon attachment.

Results

Kank is associated with microtubule plus ends in an EB1
dependent manner

To understand how microtubule plus ends are regulated during

development, we have carried out in vitro expression screening for

EB1 interacting proteins. In brief, cDNAs from an annotated

cDNA collection (Drosophila Gold collection) were transcribed

and translated in vitro. The products were pulled down using

bacterially produced MBP-EB1 or MBP alone to identify proteins

which specifically interact with EB1. As these cDNAs were isolated

from various tissues and developmental stages, we hoped that this

method would identify EB1 interacting proteins even if they are

only expressed in certain cell types and developmental stages. This

is in contrast to mass spectrometry methods which only identify

proteins expressed in specific starting cells. The gene product of

CG10249 (Figure 1A) was identified as a protein which can

directly bind EB1 in vitro (Figure 1B). CG10249 is conserved

among higher eukaryotes and highly homologous to human

Kank1-4. This is the sole member of the Kank family of proteins

in Drosophila melanogaster, and therefore called Kank here.

To determine whether Kank can localise to microtubule plus

ends, GFP fused full-length Kank (GFP-Kank) was expressed in

Drosophila cultured S2 cells. S2 cells were transfected with a

plasmid expressing GFP-Kank under the actin5C promoter and

immunostained for GFP and a-tubulin (Figure 1C). In interphase

cells, GFP-Kank showed diffuse cytoplasmic localisation in

addition to its primary localisation with the ends of microtubules.

The intensity and length of the GFP signal at microtubule ends

was variable. As Kank interacts with EB1 in vitro, localisation of

GFP-Kank relative to EB1 in S2 cells was investigated by co-

immunostaining (Figure 1D). In most cells (76%), GFP-Kank co-

localised with the majority of EB1 comets.

EB1 has been shown to recruit proteins to the plus ends of

microtubules [6,9,21]. To test whether EB1 is required for the

microtubule plus end localisation of GFP-Kank, we depleted EB1

from S2 cells by RNA interference (RNAi) and transfected these

cells with a plasmid expressing GFP-Kank. A western blot

confirmed a reduction of EB1 protein in the cells (Figure 1E),

although a small amount of EB1 was observed as comets at

microtubule plus ends (Figure 1F). Immunostaining of GFP and

tubulin showed that the localisation of GFP-Kank to microtubule

plus ends was greatly reduced in S2 cells after EB1 RNAi. This

reduction was not observed in control RNAi cells (Figure 1F). This

demonstrated that the localisation of GFP-Kank at microtubule

plus ends is dependent on EB1.

Kank contains an SxIP motif that is required for
localisation to microtubule plus ends

To identify the cis-element of Kank protein responsible for its

localisation, various regions of Kank fused to GFP were transiently

expressed in S2 cells under the actin5C promoter, and their

localisation was determined by immunostaining (Figure 2A). Kank

proteins lacking the C-terminal or the N-terminal region, Kank(1–

900) and Kank(489–1224), show localisation to microtubule plus

ends similar to, but weaker than, full-length Kank (Figure 2B and

Figure S1). Smaller regions of Kank, Kank(1–500), Kank(489–

900) and Kank(889–1224), did not show microtubule plus end

localisation (Figure S2). Many proteins that EB1 recruits to

microtubule plus ends contain SxIP motifs that mediate direct

interaction with EB1 [9]. A sequence that matches to the

consensus SxIP motif is located in the middle region shared by

two Kank truncations which localise to microtubule plus ends. To

determine if this SxIP motif was responsible for microtubule plus

end localisation, the SxIP sequence was mutated to SxNK creating

Kank(I764N,P765K) (Figure 2C). Transient expression in S2 cells

showed that GFP-Kank(I764N,P765K) was diffuse in the cyto-

plasm with very little signal co-localised with EB1 to microtubule

ends (Figure 2D). The frequency of cells with GFP signal at the

majority of the EB1 comets was greatly reduced in GFP-

Kank(I764N,P765K) (1.5%) compared to cells expressing GFP-

Kank (76.5%) (Figure 2E). These results show that the SxIP motif

in the middle region of Kank is essential for Kank localisation to

EB1 and thus microtubule plus ends.

Kank can shuttle between the nucleus and the cytoplasm
Interestingly, Kank(1–500) and Kank(889–1224) both exhibit

strong nuclear localisation in most transfected cells (Figure 3A,C).

GFP-Kank(489-900) shows a weak nuclear localisation in only a

minority of cells. Nuclear localisation was not observed for full-

length Kank, Kank(1–900) or Kank(489–1224). This may be

because Kank has both nuclear localisation signals and a nuclear

export signals, or Kank has a cryptic nuclear localisation signal

that is usually non-functional. Analysis of the Kank sequence

indicates 3 putative NLSs, one within Kank(1–500) and two within

Kank(889–1224) (Figure 1A). A putative NES was identified

within Kank(489–900). To determine if full-length Kank could

localise transiently to the nucleus, nuclear export was inhibited in

cells expressing GFP-Kank by addition of leptomycin B (Fig-

ure 3B). Leptomycin B inhibits nuclear export by the active

transporter CRM1 leading to an accumulation of NLS containing

proteins in the nucleus [22]. Accumulation of GFP-Kank in the

nucleus was observed in some cells (14%) 3 hours after the

addition of leptomycin B, in comparison to cells without the drug

(,2%) (Figure 3B). This suggests that Kank shuttles between the

cytoplasm and the nucleus.

Kank is expressed throughout fly development but is
dispensable for viability and fertility

To make a deletion of the kank gene, we used two chromosomes

each carrying a transposon insertion containing a FRT site [23]

which are located at either side of the coding sequence of kank.

Flippase was expressed in transheterozygotes carrying both

transposons to induce recombination between the two FRT sites

(Figure 4A,B) and recombination events which produce the

deletion of the genomic region between the two FRTs were

selected for. This resulted in 3 strains in which the entire Kank-

Kank: A Novel EB1 Interactor in Drosophila
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coding sequence was deleted (kankD1, kankD2, kankD3). Deletion

of expected regions was confirmed by PCR (Figure S3), and the

absence of the Kank protein was confirmed by western blotting

(Figure 4D–G). Unexpectedly, unlike C. elegans in which muta-

tion of the kank orthologue, vab-19, is lethal, the kank deletion

was homozygous viable and fertile, therefore a homozygous

Figure 1. The conserved protein Kank directly interacts with EB1 in vitro and requires EB1 to localise to microtubule ends in cultured S2
cells. (A) Drosophila Kank contains the conserved structural elements of Kank family proteins. Drosophila Kank also contains putative, conserved motifs
including nuclear localisation signals (NLS in green), nuclear export signals (NES in grey) and SxIP/EB1 binding motifs (in purple). (B) Kank produced by in vitro
transcription/translation in the presence of 35S-methionine was successfully pulled down by bacterially expressed MBP-EB1 but not by MBP alone.
Autoradiograph and protein staining are shown at the top and bottom panels respectively. The input is equivalent to 30% of the pull downs. (C) Cultured S2
cells were transfected with GFP-Kank and immunostained for GFP and a-tubulin. The GFP signal localises to the cytoplasm, largely to microtubule ends
(yellow arrows). Minor localisation was also observed at the cell periphery. (D) S2 cells transfected with GFP-Kank were immunostained for GFP and EB1. The
GFP signal largely co-localised with EB1 comets (yellow arrows). (E) Immunoblotting confirmed the reduction of EB1 by RNAi. (F) Kank requires EB1 to localise
to microtubule ends. RNAi of EB1 in S2 cells led to delocalisation of GFP-Kank from microtubule ends, compared to control b-lactamase RNAi cells. The
percentage of cells with GFP-Kank signal localised to the majority of visible EB1 comets (.50%, estimate) was counted. The GFP-Kank signal at EB1 comets
was significantly reduced in EB1 RNAi cells compared to control RNAi cells and control cells without RNAi. Error bars show the standard error of the mean. For
all microscopy images yellow boxes are areas magnified in images shown below and co-localisation is indicated by yellow arrows. Scale bars = 5 mm.
doi:10.1371/journal.pone.0106112.g001
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stock could be established. Viability was confirmed at 18uC and

29uC.

To detect the Kank protein in cells or cell extracts, we have

generated antibodies which recognise the Kank protein. To

establish when Kank is expressed during development, total

protein samples from 21–24 hours old embryos, third instar

larvae, early pupae, late pupae and adult flies were prepared. All

samples were analysed by western blotting using an affinity

purified Kank antibody against Kank(489–900) (Figure 4C–G). A

band around 160 kDa, which may represent a set of proteins with

slightly different mobility, was detected in all developmental stages

in wild type. A weak band around 140 kDa is also visible, possibly

representing either a degradation product or an alternative

isoform of Kank. These bands were not present in protein samples

prepared from the kank deletion mutant at the equivalent stages,

confirming that these bands correspond to the Kank protein.

These results indicate that Kank is expressed throughout the

lifecycle of the fly.

Kank localises to muscle-tendon attachment sites in
Drosophila embryos

To determine if Kank protein levels change throughout

embryogenesis, embryos were collected for 3 hours and aged for

various lengths at 25uC. Protein samples from these embryos were

Figure 2. Kank/EB1 binding is via an EB1 binding, SxIP, motif in the middle region of Kank. (A) A summary of Kank truncations and their
microtubule plus end localisation. ++ (strong localisation), + (weak localisation), - (no localisation). (B) Kank truncations which contain the middle
region of Kank can co-localise with EB1 in S2 cells. S2 cells transfected with GFP-fused truncations were co-stained for GFP, EB1 and DNA. Co-
localisation was observed (yellow arrows). (C) The SxIP motif in Kank was mutated to SxNK. (D) S2 cells transfected with GFP-Kank(I764N,P765K) were
co-stained for GFP and EB1. Mutation of the SxIP motif in the middle region of Kank abolished co-localisation of Kank with EB1 (yellow arrows). (E)
Mutation of the SxIP motif significantly decreased the percentage of cells with GFP signal localised to the majority of the observed EB1 comets.
Significance was determined by Fishers exact chi squared test. Error bars show the standard error of the mean. For all microscopy images yellow
boxes are areas magnified in images shown below and co-localisation is indicated by yellow arrows. Scale bars = 5 mm.
doi:10.1371/journal.pone.0106112.g002
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analysed by western blotting using the Kank antibody (Figure 5A).

The Kank bands were not visible in 0–3 hour old embryos,

suggesting little or no maternal contribution. The 160 kDa band

was visible from 3 hours after egg laying (AEL) and increased in

intensity as the embryos age, until roughly 15–18 hours which is

equivalent to the stages 16/17 of embryo development (Fig-

ure 5A). The smaller band becomes visible 15–18 hours AEL.

These bands are absent in the kank deletion mutant. This

expression pattern during development indicates that expression of

Kank may be temporally regulated during embryogenesis.

To determine the localisation of Kank in embryos, wild-type

embryos of various ages were immunostained with our Kank

antibody and with the monoclonal antibody 22c10 which recognises

the Map1b-like protein Futsch and highlights neurons [24]. In

embryos at stages 16/17 or later, Kank showed very clear, distinct

localisation (Figure 5B). Each hemi segment (half segment) distinctly

displays eight spots of Kank signal, arranged as four spots in a line

along the ventral-lateral axis and four parallel spots in a line along

the dorsal-lateral axis, the posterior most spots are shifted dorsally.

These signals were not observed in the kank deletion embryos

(Figure 5B), confirming that they represent Kank localisation.

Figure 3. Kank can localise transiently to the nucleus of S2 cells. (A) Kank(1–500) and Kank(889–1224) exhibit nuclear localisation, while
truncations of Kank which contain the middle region do not. S2 cells were transfected with GFP-fused Kank truncations. Cells were then co-stained for
GFP, a-tubulin and DNA. (B) Kank shuttles between the nucleus and the cytoplasm in some cells. S2 cells transfected with GFP-Kank were incubated
with media containing leptomycin B for 3–3.5 hours, to inhibit nuclear export. Control cells were incubated with media containing methanol, the
solvent for leptomycin B. Nuclear localisation was observed more frequently in leptomycin B treated cells than control cells. Significance was
determined by Fishers exact chi squared test. Error bars show the 95% confidence interval. (C) A summary of Kank truncations and their nuclear
localisation. + and – indicate the presence and absence of the nulcear localisation with (+LB) or without (–LB) Leptomycin B. ND (Not done). Scale
bars = 5 mm.
doi:10.1371/journal.pone.0106112.g003
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Figure 4. Kank is expressed throughout development but is dispensable for viability and fertility. (A) kank (CG10249) is a ,27 kb gene
found at 51D2 on chromosome arm 2R. Putative isoforms are shown. Those in black are likely to be expressed while those in grey are less likely to be
expressed based on ModEncode data. The cDNA clone GH03482 that we used in our analysis represents isoform A of kank (highlighted in blue). This
isoform lacks the KN motif found in other Kank proteins (shown in purple). (B) Kank was deleted using transposons containing FRT sites. Firstly, the
appropriate two transposons flanking the Kank coding sequence were introduced in trans positions on homologous chromosomes (i). A flippase was
induced to promote recombination between the FRT sites (ii) and generated a deletion of the intervening sequence (iii) (C) The fragment of
Kank(489–900) used for generating an antibody against the Kank protein. (D–G) The Kank antibody detected the endogenous protein in all lifecycle
stages examined by immunoblotting in wild type but not in Kank deletion mutants. Kank was detected in embryos 21–24 hrs after egg laying (D), in
3rd instar larvae (E), in male and female late pupae [ = L] and early pupae of undetermined gender [ = E] (F), and in both male and female adult flies
(G).
doi:10.1371/journal.pone.0106112.g004
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The position of the signal appears to coincide with sites at which

muscle and tendon cells attach [25]. Co-staining of Kank with b-3

tubulin, which is preferentially expressed in muscle cells,

confirmed that Kank is localised at muscle-tendon attachment

sites (Figure 5C).

Closer observation revealed that the Kank signal overlaps with

microtubules and is strongly concentrated near sites where

microtubule ends are attached to the periphery of muscle cells

(Figure 6A). It is unclear whether the Kank signal is in muscle or

tendon cells. This localisation was confirmed when embryos were

co-stained for Kank and actin (Figure S4). As Kank protein

localises at sites of muscle attachment to epidermal cells, the

muscle morphology and microtubule organisation was examined

using the b3-tubulin antibody. No clear differences were observed

between wild type and the Kank deletion mutant (Figure 6B).

Additionally, we tested muscle and sensory function in larvae using

a wide range of assays (Figure S5) and surprisingly did not find any

significant differences between kankD mutant and wild-type

larvae, despite the specific localisation of the protein.

Discussion

EB1 is a key protein which regulates microtubule plus ends

through the recruitment of other proteins [6,21]. In this study, we

have identified Kank as an interacting protein of EB1 using in
vitro expression cloning. We have shown that Kank localises to

microtubule plus ends in an EB1-dependent manner in culture

cells. Kank is predominantly localised to the attachment region of

muscle and epidermal cells in late embryos. Flies completely

Figure 5. Kank localises to muscle-tendon attachment sites in late stage Drosophila embryos. (A) The ,160 kDa Kank band was detected
in embryos from 3–6 hours after egg laying (AEL). The amount of Kank detected by immunoblotting was observed to increase during embryonic
development. The ,140 kDa band becomes apparent 15–18 hours AEL. (B) An antibody against Kank(489–900) stained a distinct pattern in stage 16/
17 embryos. This staining was not observed in kank deletion mutants. The 22c10 antibody, which highlights neurons, was used to orient embryos. (C)
b3-tubulin staining reveals the structure of microtubules in somatic muscle cells. Co-staining with the Kank antibody showed that Kank localises at
sites of muscle attachment to the epidermis. (D) A schematic of Drosophila embryonic somatic musculature with sites of Kank staining indicated.
Scale bars = 25 mm.
doi:10.1371/journal.pone.0106112.g005
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lacking Kank are viable and fertile, and show no defects in muscle

or sensory function in our assays.

Here we used in vitro expression cloning to identify EB1

interacting proteins. As the annotated cDNA collection used here

has been derived from various developmental stages and tissues

and each gene is represented only once, we rationalised that this

approach would identify EB1-interacting proteins in an unbiased

way regardless of the expression levels in particular cell types.

Kank, the sole Drosophila orthologue of the human tumour

suppressor Kank1, was identified. This data indicates that Kank

may have a role in linking actin and microtubule regulation during

development.

Interaction between EB1 and Kank is shown by in vitro pull

down experiment and colocalisation in S2 cells. RNAi of EB1 in

GFP-Kank transfected S2 cells demonstrates that EB1 is required

for microtubule plus end localisation of Kank. We further showed

that an EB1 interaction motif (SxIP motif) of Kank is essential for

its localisation to microtubule plus ends in S2 cells. This sequence

is conserved among Drosophila and consensus sequences are

present in human Kank1 and Kank4. A recent proteomic study

identified Kank2 as a putative EB1 binding protein, though this

was not confirmed by other methods [10]. It would be of future

interest to see whether the mammalian and C. elegans Kank

orthologues associate with microtubules or with EB1.

We have also demonstrated that Kank, like human Kank1, has

the capacity to localise to the nucleus and likely does so transiently.

Using truncations, we identified the N-terminus and the C-

terminus as regions of Kank which can localise to the nucleus

while truncations of Kank which contain the middle region do not.

Treatment of S2 cells with leptomycin-B has shown that GFP-

Kank shuttles between the cytoplasm and the nucleus, at least in a

minority of cells. Human Kank1 has been shown to accompany

the transport of b-catenin from the cytoplasm to the nucleus in

some cell types [26] and it is possible this function is conserved in

Drosophila.

Deletion of the kank coding region reveals that Kank is

dispensable for viability and fertility in Drosophila. This is in

contrast with what was observed in C. elegans, where disruption of

VAB-19 expression was fatal. Additionally, we found that, despite

the developmental disorders observed in humans [27,28],

Drosophila kankD larvae do not display any motility or muscular

defects.

Kank is present throughout the Drosophila life cycle and its

expression increases during embryogenesis. At late embryonic

stages, the pattern of Kank localisation coincides with muscle-

tendon attachment sites in developing embryos. How this

localisation of Kank relates to the function of the protein has yet

to be determined. In C. elegans, GFP-VAB-19 localises to muscle-

epidermal attachment structures, consistent with the localisation

observed for Kank and is essential to maintain myotactin, VAB-

10A and intermediate filaments at attachment sites [17].

Drosophila does not contain any cytoplasmic intermediate

filaments [29], often substituting arrays of microtubules in their

place [30]. The Drosophila homologue of myotactin, sidekick,

Figure 6. Deletion of kank did not affect muscle cell morphology or microtubule organisation. (A) Closer examination of the lateral
transverse muscle shows Kank staining near sites where microtubule ends are attached to the periphery of muscle cells. (B) No clear differences were
seen in the overall organisation of somatic musculature, or in the organisation of their microtubules, between wild type and kankD as imaged with
b3-tubulin staining. Scale bars = 25 mm.
doi:10.1371/journal.pone.0106112.g006
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functions in cell adhesion at synapses in the retina [31] but its

function in muscles has not been examined. Shot, the Drosophila
homologue of VAB-10A, has been demonstrated to be required in

tendon cells for muscle-tendon junction formation [32]. It is

required for the localisation of EB1 and actin-microtubule

interaction in these cells [33,34]. Interestingly, Shot also displays

a similar localisation to Kank in the late stages of embryogenesis

[25]. Specifically Shot localises to the area enriched in microtubule

ends in tendon cells [34]. Given the role of mammalian Kank

proteins in actin regulation, it would be of a future interest to test

functional interactions between Kank and Shot in Drosophila. In

humans it has been shown that an isoform of human Kank1 has

higher expression in adult skeletal muscle, liver, heart, kidney and

tissues than in other tissues, though no studies of embryonic tissues

exist [35].

We have generated a complete deletion of Kank coding

sequence. Flies lacking Kank are viable and fertile, and our wide

range of assays did not identify defects in muscle activities in a

third instar larvae. It is possible that our assays were not sensitive

enough to detect the specific function of Kank. Considering the

localisation of Kank in Drosophila embryos, it may have a specific

function in interaction between muscle and epidermal cells.

Alternatively, the Kank function may be masked by a redundancy

with other proteins, for example Shot or other EB1 interacting

proteins. It will be interesting to further uncover such muscle

specific EB1 interacting proteins and determine the intricate

complexes formed at the site of muscle-tendon attachment.

Materials and Methods

Identification of Kank/CG10249 as an EB1 interactor
Kank was identified by Drosophila in vitro expression cloning. A

pool of 24 cDNAs from an annotated collection of Drosophila
cDNAs was transcribed and translated in vitro in the presence of
35S- methionine (Easytag, Perkin Elmer) using the T7 TnT Quick

Coupled system (Promega). Each translated product was split into

two and incubated in DIVEC buffer (50 mM Hepes pH 7.6,

1 mM MgCl2, 1 mM EGTA, 200 mM NaCl, 0.5% Triton-X100)

for 60 minutes with amylose resin (New England Biolabs) coupled

with bacterially-produced MBP or MBP-EB1. After extensive

washing in DIVEC buffer, the beads were boiled with the sample

buffer and run on an SDS gel. Dried gels were exposed to X-ray

film (Hyperfilm, GE Healthcare). cDNA pools which gave bands

specific for MBP-EB1 pull down were further studied by testing

sub-pools until a single responsible cDNA was identified.

Molecular and Protein Techniques
Standard DNA and protein techniques were used throughout

[36]. The kank coding region (GH03482) was introduced first into

the Gateway entry vector pDONR221, and then into destination

vector, pAGW to generate a plasmid for expression of Kank fused to

GFP at the N-terminus under the actin5C promoter. Regions of

kank were amplified using the appropriate primers which facilitated

the addition of attB sites, allowing introduction of the Kank regions

into the appropriate vectors. To mutate the EB1 binding motif in

Kank, two single nucleotide substitutions were introduced. To

mutate amino acid 764 (IRN) nucleotide 2339 of GH03482 was

mutated (TRA) using the following primer pair (forward/reverse),

CGGCGGACTCGAGAAATCCGCGACCCAAGC and GCT-

TGGGTCGCGGATTTCTCGAGTCCGCCG. To mutate ami-

no acid 765 (PRK) nucleotides 2341 and 2342 of GH03482 were

mutated (CCRAA) using the following primer pair (forward/

reverse), CCGTCGGACTCGAGAAATAAGCGACCCAAGCA-

CCTC and GAGGTGCTTGGGTCGCTTATTTCTCGAGT-

CCGACGG using Quick Change XLII site directed mutagenesis

kit (Agilent), following manufacturer’s instructions. Antibodies

against Kank (1:100) and mouse anti-a-tubulin 1:1000 (DM1A,

Sigma) were used for western blotting and detected by the ECL

system (Amersham Biosciences) according to the manufacturer’s

protocols.

Antibody Generation
Rabbit antibodies were raised to MBP-Kank(489–900) in the

following way: Purified protein (250 mg) was injected at regular

intervals. The final bleed from each antibody was used for

antibody purification by a method using antigen immobilised on

nitrocellulose membrane [37]. 20 mg of purified antigen was run

on an SDS gel and transferred onto a nitrocellulose membrane.

The membrane was stained with 1% Ponceau S in 1% acetic acid

and the band of antigen excised. The band was washed and

blocked and the antibody was then bound to the antigen by

incubating the membrane in 100 ml of the final antiserum diluted

1:10 in blocking solution overnight at 4uC. After extensive washes

in washing buffer, the antibody was eluted by three, consecutive 30

second washes with 400 ml elution buffer (50 mM glycine-HCl

pH2.3, 0.5 M NaCl, 0.5% Tween 20, 100 mg/ml BSA, 0.1%

NaN3). All of the eluates were combined and immediately

neutralised by adding Na2HPO4 solution to a final concentration

of 50 mM. The affinity purified antibodies were tested for

specificity and optimal dilution in immunoblotting and immuno-

fluorescence experiments. Antibodies were stored at 4uC.

Cell culture
Drosophila Schneider S2 cells were cultured. Transfections and

RNA interference (RNAi) were performed according to published

methods [38]. Plasmids were transfected using Effectene transfec-

tion reagent (Qiagen) following manual’s instructions. Double-

stranded RNA (dsRNA) corresponding to regions amplified by

primer pairs (forward/reverse), CGACTCACTATAGGAA-

GAATGGCTGTAAACGTCTAC and CGACTCACTATAGG-

GAGATGCCCGTGCTGTTGGCAC for EB1 were used.

dsRNA corresponding to E. coli beta-lactamase was used as a

control.

Cytological Analysis
S2 cells were plated on Concanavalin A coated coverslips for 2–

3 hours and fixed with 90% methanol, 3% formaldehyde, 5 mM

NaHCO3 pH9 at 280uC. Cells were stained with the following

primary antibodies: rabbit anti-Kank(489–900) 1:20, rabbit anti-

EB1 1:200, mouse anti-a-tubulin 1:250 (DM1A, Sigma), rabbit

anti-GFP 1:500 (Molecular Probes), mouse anti-GFP 1:500 (3E6,

Molecular Probes). Cells were visualised with an Axioplan-2

fluorescence microscope (Zeiss) and images were recorded with an

attached CCD camera (Hamamatsu), controlled by OpenLab

2.2.1 software (Perkin Elmer). Images were processed using

ImageJ.

Drosophila Techniques
Standard Drosophila techniques were used throughout [39] and

w1118 was used as wild type in this study. kankD mutants were

generated by inducing, by heat shock, recombination between two

FRT-containing transposons (PBac{PB}c00393 and

PBac{WH}f01478). Recombination resulted in a loss of the w+

gene from both transposons upon deletion of the kank gene.

Chromosomes which have lost the w+ gene were selected for and

tested over a deficiency uncovering the kank gene. No chromo-

somes lethal over the deficiency were isolated. Chromosomes were
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tested over the deficiency for the presence of the kank genomic

region by PCR to confirm deletion of the region (Table S1).

Embryo collection and staining
Embryos were collected on plates and aged appropriately.

Embryos were then washed with deionised water and dechor-

ionated in 2.5% chloros in water. For Kank/22c10 and Kank/

Actin stained embryos: Embryos were washed thoroughly and

transferred to a glass vial containing 1:1 heptane: methanol. The

vial was sealed and shaken for 1 minute after which the liquid was

extracted with a pipette and replaced with fresh methanol. These

embryos were then incubated at room temperature for over

4 hours. Rehydration was done by passaging the embryos through

increased concentrations of PBS in methanol (20%, 40%, 60%,

80% 100%) for 10 minutes at a time and stained. For Kank/b3-

tubulin stained embryos: embryos were stained according to

previously published methods [40]. Antibody concentrations used

were: 1:500 rabbit anti-Kank(489–900), 1:500 mouse 22c10

(Developmental Hybridoma Studies Bank), 1:5000 guinea pig

anti-b3 tubulin [41] and 1:500 rabbit anti-b3 tubulin [42].

Embryos were then mounted in mounting medium (2.5% propyl

gallate, 85% glycerol) and viewed on an LSM510 confocal

microscope. Images were processed using ImageJ.

Supporting Information

Figure S1 Kank(1–889) and Kank(489–1224), co-localise
with EB1. S2 cells transfected with GFP-Kank(1–889) and GFP-

Kank(489–1224) were co-stained for GFP and EB1. The number

of cells with GFP localised to the majority of the EB1 comets (.

50% estimate) was counted. For both truncations colocalisation of

the GFP signal with EB1 was observed in the majority of observed

cells. Error bars show the standard error of the mean.

(TIF)

Figure S2 Kank(1–500), Kank(489–900) or Kank(889–
1224) do not co-localise with EB1. S2 cells were transfected

with Kank(1–500), Kank(489–900) or Kank(889–1224) and co-

stained for GFP and EB1. These truncations showed diffuse

localisation within the cytoplasm. In addition, Kank(1–500) and

Kank(889–1224) localised to the nucleus. GFP signal was observed

at the cell periphery for Kank(1–500) and Kank(489–900). Yellow

boxes are areas magnified in images shown below. Scale

bars = 5 mm.

(TIF)

Figure S3 Deletion of Kank was confirmed by PCR. (A)

PCR was carried out on genomic DNA of three kank deletion (D1,
D2, D3) and two parental lines (P[c00393], P[f01478]) using

designated primers (Table S1).

(TIF)

Figure S4 Kank localises to muscle tendon attachment
sites. As actin staining is quite ubiquitous, Z sections of actin

stained embryos were examined to visualise cells which resembled

those muscle cells indicated in the schematic. The localisation of

the Kank signal is observed at the sites of muscle-tendon

attachment. Coloured boxes show the similarities between actin

staining and the somatic muscle schematic. Scale bar = 25 mm.

(TIF)

Figure S5 kankD larvae do not exhibit any motility or
sensory defects. Unless otherwise stated, larvae examined were

late 3rd instar (,76 hours after hatching) and significance was

determined by Student’s t-test (A–C,E) or Fisher’s exact chi-square

test (D,F). Error bars show the standard error of the mean (A–C,E)

or the 95% confidence interval (D,F). All assays were carried out at

room temperature. (A) In the first assay the motility of larvae was

examined (adapted from [43]) The number of gridlines passed by

individual larva in 60 seconds was counted. The number of

gridlines crossed by the kankD larvae was similar to that crossed by

the wild type control (p.0.05). (B) In the second assay the overall

coordination and motility of larvae was then examined by

counting the number of full body motile waves (peristaltic waves)

carried out by larvae in one minute (adapted from [44]). The

peristaltic waves travelled the entire length of the larva in a

coordinated fashion in both wild type and the mutant. The

frequency of peristaltic waves was not significantly different

between the kankD and wild type (p.0.05). (C) In the third assay,

larvae were rolled from their ventral to their dorsal side while on

an agarose plate (adapted from [45]). The time taken for them to

right themselves was measured, with a maximum of 2 minutes

allowed. The time taken by kankD and wild type was similar (,30

seconds; p.0.05). (D) The fourth assay determined if larvae

maintained burrowing ability. Foraging third instar larva were

placed on top of food in a bottle which was then placed in the dark

for 2 hours (adapted from [46]). After this time, the number of

larvae remaining on the food was counted. No significant

difference between the kankD and the wild-type larvae were

observed (p.0.05). (E) Larvae were manually stimulated to elicit a

nociceptive response (adapted from [47]). Third instar larvae was

prodded by a blunt instrument at their abdominal segments and

evading action was observed. No significant difference was found

between kankD and wild type (p.0.05). The number of

stimulations required to elicit a response was similar between

strains. (F) kankD larvae have a wild type reaction to light (adapted

from [48]). Foraging 3rd instar larvae were placed on the midline

of a plate with food. Half the plate was covered with aluminium

foil and the plate was placed under a strong lamp in an otherwise

dark room. Larvae were allowed to wander for 45–60 minutes

after which the number on each side of the plate was counted.

kankD larvae show an aversion to light equal to that of wild type.

(TIF)

Table S1 Sequences of primers used to check for kank
deletion in genomic DNA.

(DOC)
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