65 research outputs found

    Genomic surveillance detects Salmonella enterica serovar Paratyphi A harbouring blaCTX-M-15 from a traveller returning from Bangladesh

    Get PDF
    Whole genome sequencing (WGS) has been used routinely by Public Health England (PHE) for identification, surveillance and monitoring of resistance determinants in referred Salmonella isolates since 2015. We report the first identified case of extended-spectrum-β-lactamase (ESBL) Salmonella enterica serovar Paratyphi A (S. Paratyphi A) isolated from a traveller returning to England from Bangladesh in November 2017. The isolate (440915) was resistant to ciprofloxacin and harboured both the mobile element ISEcp9 -blaCTX-M-15-hp-tnpA and blaTEM-191, associated with ESBL production. Phenotypic resistance was subsequently confirmed by Antimicrobial Susceptibility Testing (AST). S. Paratyphi A 440915 harboured an IncI1 plasmid previously reported to encode ESBL elements in Enterobacteriaceae and recently described in a S. Typhi isolate from Bangladesh. Results from this study indicate the importance of monitoring imported drug resistance for typhoidal salmonellae as ceftriaxone is the first line antibiotic treatment for complicated enteric fever in England. We conclude that WGS provides a rapid, accurate method for surveillance of drug resistance genes in Salmonella, leading to the first reported case of ESBL producing S. Paratyphi A and continues to inform the national treatment guidelines for management of enteric fever

    Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe1−y_{1-y}Coy_yGe films

    Full text link
    Epitaxial films of the B20-structure alloy Fe1−y_{1-y}Coy_yGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulk-like values of one Bohr magneton per Fe atom for FeGe to zero for non-magnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content yy and diverges at y∼0.45y \sim 0.45. This indicates a zero-crossing of the DMI, which we reproduced in calculations using first principle methods. We also measured the longitudinal and Hall resistivity of our films as a function of magnetic field, temperature, and Co content yy. The Hall resistivity is expected to contain contributions from the ordinary, anomalous, and topological Hall effects. Both the anomalous and topological Hall resistivities show peaks around y∼0.5y \sim 0.5. Our first principles calculations show a peak in the topological Hall constant at this value of yy, related to the strong spin-polarisation predicted for intermediate values of yy. Half-metallicity is predicted for y=0.6y = 0.6, consistent with the experimentally observed linear magnetoresistance at this composition. Whilst it is possible to reconcile theory with experiment for the various Hall effects for FeGe, the large topological Hall resistivities for y∼0.5y \sim 0.5 are much larger then expected when the very small emergent fields associated with the divergence in the DMI are taken into account

    Determining the proximity effect-induced magnetic moment in graphene by polarized neutron reflectivity and x-ray magnetic circular dichroism

    Get PDF
    We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C K-edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 μB/C atom induced in the graphene layer. For a more precise estimation, we conducted PNR measurements. The PNR results indicate an induced magnetic moment of ∼0.41 μB/C atom at 10 K for epitaxial and rotated-domain graphene. Additional PNR measurements on graphene grown on a nonmagnetic Ni9Mo1 substrate, where no magnetic moment in graphene is measured, suggest that the origin of the induced magnetic moment is due to the opening of the graphene’s Dirac cone as a result of the strong C pz-Ni 3d hybridization

    Characterization of a pESI-like plasmid and analysis of multidrug-resistant Salmonella enterica Infantis isolates in England and Wales

    Get PDF
    Salmonella enterica serovar Infantis is the fifth most common Salmonella serovar isolated in England and Wales. Epidemiological, genotyping and antimicrobial-resistance data for S. enterica Infantis isolates were used to analyse English and Welsh demographics over a 5 year period. Travel cases associated with S. enterica Infantis were mainly from Asia, followed by cases from Europe and North America. Since 2000, increasing numbers of S. enterica Infantis had multidrug resistance determinants harboured on a large plasmid termed ‘plasmid of emerging S. enterica Infantis’ (pESI). Between 2013 and 2018, 42 S. enterica Infantis isolates were isolated from humans and food that harboured resistance determinants to multiple antimicrobial classes present on a pESI-like plasmid, including extended-spectrum β-lactamases (ESBLs; blaCTX-M-65). Nanopore sequencing of an ESBL-producing human S. enterica Infantis isolate indicated the presence of two regions on an IncFIB pESI-like plasmid harbouring multiple resistance genes. Phylogenetic analysis of the English and Welsh S. enterica Infantis population indicated that the majority of multidrug-resistant isolates harbouring the pESI-like plasmid belonged to a single clade maintained within the population. The blaCTX-M-65 ESBL isolates first isolated in 2013 comprise a lineage within this clade, which was mainly associated with South America. Our data, therefore, show the emergence of a stable resistant clone that has been in circulation for some time in the human population in England and Wales, highlighting the necessity of monitoring resistance in this serovar

    What's in a Name? Species-Wide Whole-Genome Sequencing Resolves Invasive and Noninvasive Lineages of Salmonella enterica Serotype Paratyphi B

    Get PDF
    For 100 years, it has been obvious that Salmonella enterica strains sharing the serotype with the formula 1,4,[ 5], 12: b:1,2-now known as ParatyphiB-can cause diseases ranging from serious systemic infections to self-limiting gastroenteritis. Despite considerable predicted diversity between strains carrying the common Paratyphi B serotype, there remain few methods that subdivide the group into groups that are congruent with their disease phenotypes. Paratyphi B therefore represents one of the canonical examples in Salmonella where serotyping combined with classical microbiological tests fails to provide clinically informative information. Here, we use genomics to provide the first high-resolution view of this serotype, placing it into a wider genomic context of the Salmonella enterica species. These analyses reveal why it has been impossible to subdivide this serotype based upon phenotypic and limited molecular approaches. By examining the genomic data in detail, we are able to identify common features that correlate with strains of clinical importance. The results presented here provide new diagnostic targets, as well as posing important new questions about the basis for the invasive disease phenotype observed in a subset of strains. IMPORTANCE Salmonella enterica strains carrying the serotype Paratyphi B have long been known to possess Jekyll and Hyde characteristics; some cause gastroenteritis, while others cause serious invasive disease. Understanding what makes up the population of strains carrying this serotype, as well as the source of their invasive disease, is a 100-year-old puzzle that we address here using genomics. Our analysis provides the first high-resolution view of this serotype, placing strains carrying serotype Paratyphi B into the wider genomic context of the Salmonella enterica species. This work reveals a history of disease dating back to the middle ages, caused by a group of distinct lineages with various abilities to cause invasive disease. By quantifying the key genomic differences between the invasive and noninvasive populations, we are able to identify key virulence-related targets that can form the basis of simple, rapid, point-of-care tests.Peer reviewe

    A One Health Perspective on Salmonella enterica Serovar Infantis, an Emerging Human Multidrug-Resistant Pathogen

    Get PDF
    Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen

    Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake

    Get PDF
    Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 (15N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful

    Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    Get PDF
    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. `Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).Peer reviewe
    • …
    corecore