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ABSTRACT For 100 years, it has been obvious that Salmonella enterica strains sharing the serotype with the formula 1,4,[5],12:
b:1,2—now known as Paratyphi B— can cause diseases ranging from serious systemic infections to self-limiting gastroenteritis.
Despite considerable predicted diversity between strains carrying the common Paratyphi B serotype, there remain few methods
that subdivide the group into groups that are congruent with their disease phenotypes. Paratyphi B therefore represents one of
the canonical examples in Salmonella where serotyping combined with classical microbiological tests fails to provide clinically
informative information. Here, we use genomics to provide the first high-resolution view of this serotype, placing it into a wider
genomic context of the Salmonella enterica species. These analyses reveal why it has been impossible to subdivide this serotype
based upon phenotypic and limited molecular approaches. By examining the genomic data in detail, we are able to identify com-
mon features that correlate with strains of clinical importance. The results presented here provide new diagnostic targets, as well
as posing important new questions about the basis for the invasive disease phenotype observed in a subset of strains.

IMPORTANCE Salmonella enterica strains carrying the serotype Paratyphi B have long been known to possess Jekyll and Hyde
characteristics; some cause gastroenteritis, while others cause serious invasive disease. Understanding what makes up the popu-
lation of strains carrying this serotype, as well as the source of their invasive disease, is a 100-year-old puzzle that we address here
using genomics. Our analysis provides the first high-resolution view of this serotype, placing strains carrying serotype Paratyphi
B into the wider genomic context of the Salmonella enterica species. This work reveals a history of disease dating back to the
middle ages, caused by a group of distinct lineages with various abilities to cause invasive disease. By quantifying the key
genomic differences between the invasive and noninvasive populations, we are able to identify key virulence-related targets that
can form the basis of simple, rapid, point-of-care tests.
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Salmonella paratyphosus B, Salmonella schottmuelleri, Salmo-
nella Java: the serotype of Salmonella enterica subspecies en-

terica with the formula 1,4,[5],12:b:1,2 that is now known as S. en-
terica serotype Paratyphi B has not always been named thus. In the
last 100 years, it has been known by various names, several of
which are still commonly used today. The reason for this multi-
plicity of names is because isolates possessing the serotype have
long been observed to cause either invasive disease (characterized

by life-threatening paratyphoid fever) or gastroenteritis. It was
clear to many microbiologists in the late 19th and early 20th cen-
turies that, despite the shared serotype, there were differences be-
tween strains that related to the different disease outcomes. How-
ever, categorizing the differences in the form of classical,
reproducible biochemical tests has proven to be a nontrivial prob-
lem, as the differences are more subtle than the disease phenotypes
might suggest. Muller and, later, Kauffmann ultimately subdi-
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vided the serotype into two biovars on the basis of an ability to
form a slime wall and to ferment dextrorotatory tartrate (dTa) (1,
2). In his classification of Salmonella isolates, Kauffmann named
those isolates that formed a slime wall, were unable to ferment dTa
(dTa�), and caused paratyphoid fever in humans S. Paratyphi B.
Those isolates that did not form a slime wall and were able to
ferment dTa (dTa�), he named S. Java (3). The already unclear
delineation was further confused when Le Minor (4) ultimately
rejected this nomenclature to redefine S. Java as a biovar of
S. Paratyphi B. In practice, the result of the d-tartrate test remains
the principal method for distinguishing S. Paratyphi B isolates
causing invasive disease from those causing gastroenteritis (5).
The implications of an isolate being classified as S. Paratyphi B or
S. Java are significant for patients, reference laboratories, and pub-
lic health authorities. Although in the first instance, treatment will
depend on presentation, as a member of the so-called typhoidal
Salmonella group, cases of disease where S. Paratyphi B is detected
generally necessitate household follow-up and contact tracing.
This is not required for S. Java infections, even when these cause
systemic infections. In laboratory research, there are also signifi-
cantly different handling requirements depending on the result—
dTa� strains are treated as biological safety level 3 (BSL3) organ-
isms, while dTa� organisms are handled at BSL2.

The molecular explanation for the differences in the ability to
ferment d-tartrate is known: one single-nucleotide polymorphism
(SNP) in the first codon of the gene upstream from ttdA and ttdB,
the genes responsible for d-tartrate metabolism, ablates their ex-
pression (5). Based on IS200 profiling (6), multilocus sequence
typing (MLST) (7), and latterly, clustered regularly interspaced
short palindromic repeat (CRISPR) typing (8), it is clear that the
serotype falls into a number of discrete groups (7) and that pos-
session of the dTa� SNP is characteristic of groups of strains that
are predominantly associated with invasive disease. However, the
relationship between groups of isolates carrying the common se-
rotype remains unresolved (9).

Salmonella strains possessing this serotype remain a common
cause of gastroenteritis, being responsible for recent outbreaks in
the United Kingdom (10), Belgium (11), Scandinavia (12), Can-
ada (13, 14), and the United States (15), as well as a cause of
invasive disease around the world in travelers (16). Moreover,
since the late 1990s, two different clones of S. Paratyphi B dTa�

with resistance to multiple antibiotics have become increasingly
associated with human infections (17), poultry, and poultry prod-
ucts (11, 18). These clones carry two different multidrug
resistance-encoding integrons, Salmonella genomic island 1
(SGI-1) (19) and a chromosomally located class 2 integron carry-
ing the dfrA1-sat2-aadA1 (Tn7) array of gene cassettes (20), which
confer resistance to trimethoprim, streptothricin, and aminogly-
cosides, respectively. Because of an inability to unambiguously
subdivide this grouping in a phylogenetically meaningful way and
an almost complete lack of knowledge about the genomic content
and phylogenetic relationships of these strains, the significance of
these observations is difficult to quantify. The work presented here
defines the population structure of strains carrying the Paratyphi
B serotype and reveals how strains carrying this serotype can be
subdivided and how they vary in gene content. By gaining a better
understanding of the population structure of strains carrying this
Paratyphi B serotype, we are able to define what separates invasive
from noninvasive strains, opening up new opportunities to better
diagnose and track this organism.

RESULTS AND DISCUSSION
Whole-genome sequencing reveals the extent of divergence be-
tween isolates sharing the Paratyphi B serotype. Based upon its
O antigen (formula 1,4,[5],12), S. Paratyphi B is a member of the
group O:4 (formally group B) salmonellae. Forty-six different O
serogroups have been identified within Salmonella (21), and these
serogroups provide a structure to group together the �2,500 se-
rotypes of the species (22). To quantify the population structure of
S. Paratyphi B, we assembled a collection of 191 strains collected
over 120 years that possess the serotype with the formula
1,4,[5],12:b:[1,2], encompassing both diphasic (b:1,2-type flagella
present) and monophasic (b-type flagella only) Paratyphi B/Java
isolates. To place these samples into a wider context, we also in-
cluded a selection of 25 other salmonellae, including 10 other
representatives of group O:4, as well as published reference ge-
nomes for 6 other Salmonella serotypes associated with invasive
disease in humans and animals (see Table S1 in the supplemental
material). We began our analysis by identifying the core and ac-
cessory genomes across the isolate collection. The diversity of iso-
lates carrying this serotype is evidenced in the fact that the pange-
nome of the serotype itself is open (see Fig. S1) (23) and the core
genome size of isolates sharing the Paratyphi B serotype (2,949
genes) is smaller by almost 1,000 genes than those reported for
other serotypes, such as S. enterica serotype Typhimurium (3,846
genes) (24). Relative to the core genome across the sample data
set, approximately 53% of the genome of the S. Paratyphi B refer-
ence strain is core to the serotype, in comparison to 43% that is
core to the entire sample data set. Following the removal of puta-
tive recombinant regions using Gubbins (see Fig. S1) (25), a phy-
logenetic analysis based on the remaining SNPs found at positions
that are shared by all isolates visualizes the extreme level of diver-
sity between isolates carrying the Paratyphi B serotype (Fig. 1).
However, it is also clear that there is not a continuum of diversity
present within this group, but rather, strains carrying the common
serotype fall into discrete clusters of strains. Recognizing that clas-
sical subdivisions have introduced a confused and inconsistent
nomenclature to describe this group, we used a population genetic
statistical framework, Bayesian Analysis of Population Structure
(BAPS) (26), to perform an unsupervised subdivision of the Para-
typhi B complex into a set of phylogroups (PGs). Iteratively clus-
tering across the population, BAPS identified a set of 10 Paratyphi
B clusters that we define as PG1 to PG10. Only isolates from PG1
possessed the SNP that is diagnostic for dTa� strains. This repre-
sents the first occasion, to our knowledge, where an automated
approach has unambiguously separated out dTa� strains into a
cluster that is distinct from other closely related strains without
the need for a marker such as the dTa� SNP to be provided as a
basis for subdivision. Our results show that the dTa� isolates fall
within a group of 5 PGs (PG1 to -5) that, although separated by
between 1,000 and 10,000 SNPs, are more closely related to one
another than they are to other PGs or serotypes. Intriguingly, this
difference is of a scale similar to the ~6,000 SNPs that separate the
closely related host generalist and invasive serotypes S. enterica se-
rotypes Enteritidis and Gallinarum/Pullorum (see Fig. S2) (27).
Moving beyond PG1 to -5, it is clear that the serotype 1,4,[5],12:
b:[1,2] is found in genomic backgrounds across the S. enterica
species tree (Fig. 1) and that all isolates sharing this serotype
clearly do not share a recent common ancestor. The extent of the
separation between PGs is marked: isolates from S. enterica sero-
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types Heidelberg, Derby, Paratyphi C, Choleraesuis, Gallinarum
var. Gallinarum, Gallinarum var. Pullorum, Enteritidis, and
Dublin all share more SNPs with PG1 to -9 than the isolates of
PG10 do.

The common serotype is a result of recombination events at
the flagellum loci. Kauffmann suggested that the evident variabil-
ity in the genetic background of Paratyphi B strains may be due to
recombination (28). The Paratyphi B serotype is defined based on
its O antigen (responsible for the first part of the serotype formula,
4,5,12) and phase 1 and phase 2 flagella (the H antigens). The
phase 1 flagella are of type b, and either the phase 2 flagella are of
type 1,2 or, in the case of monophasic isolates, no phase 2 is pres-
ent. Extracting the complete O-antigen gene cluster, as well as the
fliC (phase 1) and fljB (phase 2) genes, and generating a phylogeny
of these components individually revealed a startling similarity in
the topology of the O-antigen cluster compared with the core
genome tree (Fig. 1, inset). In contrast, the phylogenies for fliC

(Fig. 1, inset) and fljB (Fig. 1, inset) individually revealed evolu-
tionary histories that were markedly different from those of both
the core genome and the O-antigen gene cluster. In the case of fljB,
nonmonophasic Paratyphi B isolates all possessed identical or
nearly identical gene sequences (Fig. 1, inset). Looking at the 20 kb
of DNA around these two genes reveals a topology that is mark-
edly different from the core genome tree (see Fig. S3 in the sup-
plemental material), implying that while the common flagella
with limited diversity could be due to selection, the more parsi-
monious explanation for the lack of diversity within fljB and fliC is
that of homologous recombination. These results suggest that, in
a number of cases, the import of flagellum genes has led to the
establishment of clear lineages that have been able to cause wide-
spread disease in humans and animals. It is, however, also inter-
esting to note that when collecting isolates sharing the serotype
1,4,[5],12:b:[1,2] from clinical settings, we also collected a small
number of strains that are singletons (Fig. 1, highlighted in grey).
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FIG 1 Whole-genome and LPS gene maximum-likelihood phylogenies of strains carrying serotype Paratyphi B and reference strains from other serotypes. Main
figure: whole-genome phylogeny of the Paratyphi B strains, with representatives from other serogroup B and invasive serotypes shown. The tree was constructed
based on the core genome for the isolates and drawn using RAxML. Next to the tree, colored blocks indicate the BAPS cluster that an isolate has been assigned
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cluster extracted from Paratyphi B and reference strains used to generate the whole-genome phylogeny, drawn using RAxML. In all cases, the phylogenetic trees
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Of these cases, one strain appears to be novel, with an MLST pro-
file that was uncharacterized previously. We observe that this
strain is most closely related (1,191 SNPs; see Fig. S2) to a sample
that has been serotyped as S. Derby and so may represent a sero-
type switch from S. Derby (antigenic formula 1,4,[5],12:f,g:[1,2]),
based on the acquisition of the b-type phase 1 flagella. In the case
of the other singleton, no close relatives were identified, although
other isolates sharing the same sequence type are recorded in the
MLST database with a Paratyphi B serotype, suggesting that this
observation is not simply the result of a sequencing or serotyping
error.

dTa� strains have limited differences in their virulence rep-
ertoire compared with close relatives. The origin of the confu-
sion around the subdivision of the Paratyphi B complex is not
simply that its constituent members possess a shared serotype, it is
that a subset of the strains with this serotype has frequently been
found to cause invasive disease. Thus, the significance of serotype
Paratyphi B is built not only upon the phylogenetic distribution of
the fliC/fljB genes but, also, the distribution of disease phenotypes
and virulence genotypes among strains sharing this serotype. To
examine the congruence of disease types with phylogenetic posi-
tions and known virulence determinants, we examined our sam-
ple collection in light of clinical metadata and the known virulence
repertoire of these organisms (Fig. 2).

Within PG1, we found that 20/34 of the isolates for which we
had clinical metadata were associated with cases of invasive dis-
ease. However, while all of the dTa� samples in our data set are
found in PG1, it was apparent that there were also cases of invasive
disease caused by isolates from outside this PG. Most notably, 5/17
isolates from PG5 (Fig. 2) were also associated with invasive dis-
ease. However, performing a pairwise comparison of the rates of
invasive disease between PGs using the �2 test reveals that after

correcting for multiple sampling, only PG1 shows a significant
difference in the rate of invasive disease-causing isolates relative to
those of the other PGs (P value of 3.9E�6 for PG1 versus PG3,
1.2E�5 versus PG4, and 0.002 versus PG5 following a Holm-
Bonferroni correction). While it is unknown whether the genes
affected by the dTa� SNP are causative or merely indicative in
terms of the disease phenotype observed, what is clear is that the
only Paratyphi B lineage that is strongly associated with invasive
disease is PG1. Moving beyond the classical single-site test for
subdividing these lineages, we examined the core and pange-
nomes of the PGs to look for variation in gene contents, specifi-
cally in the virulence repertoire of the Paratyphi B complex. We
identified the distribution of known Salmonella virulence factors
associated with invasive disease, including Salmonella pathogenic-
ity islands (SPIs) and their associated type three secretion system
(TTSS) effector proteins, as well as previously characterized fim-
briae (Fig. 2; see also Fig. S4 in the supplemental material).

Our analysis indicates that across all of the PGs, the comple-
ment of virulence-related factors is mostly consistent, with all PGs
sharing SPI-1 to -5, -9, and -11. All except PG3, -4, and -6 ap-
peared to possess SPI-6, including the type VI secretion system. All
of the lineages other than the poultry-associated PG10 possess
SPI-12, -13, -14, and -16, while PG10 alone possesses SPI-8 and
-17. Across the population, in terms of the SPI complement, there
is therefore little to distinguish the apparently more invasive
members of PG1 from most of the PGs of the Paratyphi B com-
plex. One possible explanation could be found in the effector and
fimbriae proteins.

While the fimbrial content is broadly similar across the sample
set (see Fig. S4 in the supplemental material), there is some vari-
ation evident when examining TTSS effectors (Fig. 2). Isolates
belonging to PG1 to -5 and -7 possess the effector gene srfJ,
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whereas members of other PGs lack it, while PG1 has lost the
effectors sseJ and steB, mirroring losses that have also occurred in
S. enterica serotype Typhi. This is particularly of note since com-
plementation of S. Typhi with a functional sseJ decreases cytotox-
icity (29), a capability that is thought to aid S. Typhi in entering the
blood stream. steB was recently discovered in S. Typhimurium
(30), and its role in virulence is yet to be elucidated, but its absence
in S. Paratyphi B and S. Typhi is suggestive of a role that could
limit the invasiveness of these lineages were it present. Contrary to
previous work (31), we found that sopE was not present in all of
the isolates of PG1. We did observe that 2 of the members of PG1
had a gene homologous to the sopE used in the 2003 paper (31);
however, this hit was also found in other isolates across our data
set, demonstrating that it is not a suitable marker for identification
of invasive strains of Paratyphi B. We also investigated the pange-
nome to identify any genes that were lost by all of PG1 but present
in their close relatives and any genes that have been gained by the
PG1 ancestor and retained by all samples. This revealed a limited
number of gains and losses within the whole group, with 31 genes
being apparently lost across PG1 that are present in every other
isolate found with the same serotype. Interestingly, eight of these
genes are hydrogenases, and one is in the cellulose biosynthesis
pathway (see Table S2)—losses that are also found in other inva-
sive lineages, such as S. Typhi and S. Gallinarum (27), as well as in
host-adapted strains of other enterobacteriaceae, such as Yersinia
pestis and Yersinia enterocolitica (32). These genes have been pre-
viously associated with adaptation to the inflamed mammalian
gut (32–34), and so these losses would be consistent with an or-
ganism that has adapted or is adapting into an invasive niche.

Paratyphi B dTa� strains share an ancestor predicted to have
existed in the 12th century. Collectively, the analyses of the
virulence-related characteristics of the Paratyphi B PGs revealed a
set of lineages that are relatively consistent in terms of their core
gene content, with core genomes for PGs with �2 isolates ranging
from 3,951 to 4,511 genes. Members of PG1 share 4,236 genes, a
level of gene conservation that suggests that the genomes of the
Paratyphi B PGs are stable, with a limited amount of gene gain and
loss. To place this into a temporal context and to better under-
stand the natural history of the PGs, we used Bayesian Evolution-
ary Analysis by Sampling Trees (BEAST) to perform a set of pop-
ulation genomic analyses within the PGs where we had sufficient
dating information/coverage to produce robust estimates; these
were PG1, -2, -5, -8/-9, and -10 (see Fig. S5 in the supplemental
material). PG3, -4, and -6 were too diverse to examine using
BEAST, and PG7 had too few isolates. These analyses revealed that
the invasive lineage, PG1, is more ancient than may have been
predicted based upon the low frequency with which its members
cause disease today. The median date predicted by BEAST (35) for
the most recent common ancestor (MRCA) of this group is 1188
AD (95% confidence interval [CI], 1799 AD to 469 BC), implying
that PG1 is older than the Paratyphi A serotype, whose common
ancestor is dated to ~450 years ago (36). This is an interesting
finding for two reasons. First, this suggests that the core genome of
4,236 genes has been conserved within PG1 for over 750 years,
implying that the genome is very stable. Second, this finding is
notable given that Paratyphi A strains are now more frequently
isolated than Paratyphi B strains but Paratyphi B appears to have
emerged first. In comparison, the other main PGs of clinical sig-
nificance appear to have emerged more recently. PG8/-9 have an
MRCA in 1726 (95% CI, 1880 to 1448), while the poultry-

associated PG10 has an MRCA that dates to 1977 (95% CI, 2001 to
1859), pointing toward its recent emergence as a pathogen asso-
ciated with intensive farming of poultry. Finally, the most recent
strains in PG5 have an MRCA dated to the beginning of the 1980s
(95% CI, 2008 to 1738). This observation suggests that the clone
has recently expanded, a surprising observation given the lack of
antimicrobial resistance found in this group. This observation is
true of most of the PGs examined. We see generally low levels of
inter-PG recombination (see Fig. S6) and very limited evidence of
the acquisition of antimicrobial resistance (see Fig. S7). Our anal-
ysis reveals that the acquisitions of resistance elements have been
single, local events that occurred within PG3 (SGI-1) and PG10 (a
chromosomal class 2 integron along with extended-spectrum
�-lactamase [ESBL]-encoding plasmids). Subsequently, we only
observe evidence for vertical inheritance, with no evidence of the
spread of these elements to other lineages.

Conclusion. Using next-generation sequencing, we have been
able to uncover much of the genomic basis for the confusion
around this serotype. It is clear, when examining the data on a
genomic scale, that strains possessing a serotype with the antigenic
formula 1,4,[5],12:b:[1,2] can be subdivided into at least 10
groups. Unlike MLST, which could only ever indicate that these
groupings were diverse, whole-genome sequencing provides us
with the capacity to quantify the divergence between groups and
place the resulting data in the context of other inter- and intra-
Salmonella serotype variation. The analysis presented here dem-
onstrates the advantages of using whole-genome approaches over
eBURST groups (eBGs) for subdividing S. Paratyphi B. eBGs have
previously been suggested as a basis for diagnostics for S. enterica
(7), but the results presented here clearly show that eBGs do not
distinguish dTa� strains from dTa� strains, making these unsuit-
able for rapid diagnostics from either traditional MLST or genome
sequence data. This analysis also reveals clearly that, over the last
1,000 years, there have been a set of independent clonal expan-
sions of lineages that share the common serotype with the formula
1,4,5,12:b:1,2, and based upon an examination of the flagellum
genes responsible for the phase 1 and phase 2 components of the
serotype, these expansions have been predated by recombination
events importing one or other of these genes into different chro-
mosomal backgrounds. The number of lineages carrying serotype
Paratyphi B is suggestive of the fact that this serotype is successful
in a number of niches. Within the population of strains carrying
serotype Paratyphi B, there are strains that have been isolated
from humans, where they caused invasive disease or gastroenteri-
tis, from poultry, and from aquatic organisms and/or the aquatic
environment. This large number of lineages carrying the same
serotype is suggestive that serotype switching is more frequent
than in other successful lineages, such as S. Typhimurium, which
have remained discrete lineages.

Conversely, we find that both the core genome more generally
and lipopolysaccharide (LPS) genes specifically are remarkably
stable, with the genes within the O-antigen cluster producing a
phylogeny mirroring that produced by the core genome. Of the
10 PGs that we identified, one (PG1) comprised the canonical
Paratyphi B group. This group is relatively closely related to PG2
to -5, producing a larger cluster of lineages where the intergroup
divergence is comparable to that found in other closely related
host generalist/host-specialized lineages, such as the S. Enteritidis/
Gallinarum group. Examining phylogenetic clustering in the con-
text of disease type, it is clear, however, that invasive disease is not
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limited to PG1 to -3; PG5, -6, -9, and -10 can all cause invasive
disease, albeit to various extents. However, based upon our sam-
ple data set, only PG1 is significantly associated with invasive dis-
ease. While isolates that are dTa� have historically been classified
as “invasive,” isolates from PG5 may represent a lineage, similar to
the invasive sequence type 313 (ST313) of S. Typhimurium (37),
that has a higher propensity to cause invasive disease given partic-
ular host-associated factors (advanced age, suppressed immune
system, etc.) but which is not an “invasive” lineage per se. It is our
hope that by defining the population structure of this serotype, it
will be possible to investigate this question more precisely in the
future.

Although there are fewer clues as to the genomic basis for the
difference in disease type than may be expected, given the differ-
ence in symptoms and infection sites, there are several meaningful
signals—most notably, the variations in the complements of ef-
fectors and the presence of SPIs—that point toward the genomic
differences that underpin the observed disease types. The varia-
tions in SPI and effector presence in particular are significant for
two reasons. First, the degradation of these elements in lineages
may be mechanistic, and since they are in virulence-related fac-
tors, this degradation may relate directly to the invasiveness of the
isolates. Second, because SPIs/effectors are differentially present
within lineages within the Paratyphi B complex, they may provide
possible diagnostic testing targets that are linked to the machinery
actually used to cause disease, rather than characteristics which are
probably related to disease but not causal, such as the tartrate test.
In particular, the presence/absence of effectors sseJ and steB would
appear to provide a simple mechanism for identifying PG1 (and
S. Paratyphi A and S. Typhi) using PCR, potentially reducing the
time taken to detect BSL3 dTa� S. Paratyphi B from 13 days to a
few hours in virtually any laboratory in the world.

This work underlines the difficulty posed when genomic ap-
proaches are not used to subdivide lineages and exemplifies the
challenges that face classical typing, reinforcing the need for un-
ambiguous molecular methods for characterizing members of the
Paratyphi B complex. This work also demonstrates both the lim-
itations of genomics alone to unpick the complex biological pro-
cesses that translate genotype to phenotype and a methodological
framework that can be used to explore other polyphyletic S. en-
terica serotypes where variations in gene content have been ob-
served, such as 4,[5]12:b:�, using PCR-based approaches (38).
The lack of consistent genomic differences between PG1 to -5
suggests that the invasiveness of PG1 may be due to hitherto un-
discovered virulence determinants or to other factors, such as
transcriptional control. The loss of hydrogenases and elements of
the cellulose biosynthesis pathway— established components of
the blueprint for invasive salmonellae—is also suggestive that
metabolic changes have also occurred within PG1 as these organ-
isms adapt to an invasive niche but that Paratyphi B may represent
a sort of evolutionary halfway house, sitting somewhere between a
host-adapted and invasive serotype. This work therefore provides
a basis for reinterpreting what we already know about invasive
salmonellae, providing a simple practical basis for distinguishing
the invasive PG1 strains from other, noninvasive strains, while
building a foundation for future work to better understand what
makes dTa�/PG1 strains so invasive compared to their close dTa�

relatives in PG2 to -5.

MATERIALS AND METHODS
Samples. In order to explore the population structure of Salmonella Para-
typhi B, as defined by isolates sharing the antigenic formula 1,4,[5],12:b:
[1,2], we sequenced the genomes of a collection of 191 isolates collected
from the United Kingdom, France, Spain, Ireland, and Canada that en-
compasses all currently known MLST eBURST groups that are labeled as
being serotype Paratyphi B, including both monophasic and diphasic
strains. In addition to the deliberate selection of a range of historical
strains that covers the full population of this serotype (n � 81), we also
collected samples from clinical episodes of disease in the United Kingdom
(n � 63) and Spain (n � 33), as well as isolates from poultry-associated
disease reported previously (n � 14) (see Table S1 in the supplemental
material for a full list of the sources and strains used in this study) (11). All
of our strains were classically serotyped prior to sequencing by the respec-
tive originating reference laboratory: the Spanish National Reference Lab-
oratory, the Institut Pasteur, the Salmonella Reference Laboratory of
Health Protection England, or the National Microbiology Laboratory,
Public Health Agency of Canada. This classical serotyping was confirmed
using genome sequencing. To provide a wider phylogenetic context, we
also include within our study a further 27 Salmonella enterica isolates,
representing isolates carrying 18 different serotypes. Of these, 21 are pre-
viously published strains and 6 represent new sequences that were gener-
ated as part of this study. Additionally, we include a further 2 isolates that
are of serotype Dublin/Enteritidis but are grouped by MLST with the
predominantly Paratyphi B eBG 32 (see Table S1 for a full list of strains,
with accession numbers, serotype information, and other relevant meta-
data).

Genome sequencing. The genomes were sequenced using the Illu-
mina sequencing platform, with Genome Analyzer IIx (GAIIx), HiSeq,
and MiSeq instruments being used to sequence isolates to approximately
200� coverage, as described previously (39). The samples were generated
with a mean insert size of between 200 and 300 bp, and depending upon
the instrument used, underwent 2 � 50 bp paired-end sequencing
(GAIIx), 2 � 100 bp paired-end sequencing (HiSeq), or 2 � 250 bp
paired-end sequencing (MiSeq). The data were assembled de novo using
Velvet (40), with assemblies improved using the Velvet Columbus mod-
ule and the software package iCORN (41).

Phylogenetic analysis and variant calling. Using the tool Snippy run-
ning on the Cloud Infrastructure for Microbial Bioinformatics (46), we
performed mapping against the reference Paratyphi B strain SPB7, iden-
tifying 147,963 positions that are present in all samples in our collection
but vary in at least one isolate. Extracting these variable sites, we removed
putative regions of recombination, using the tool Gubbins (25), to pro-
duce a set of core positions that are free from recombination. These were
then used to generate a phylogenetic tree using RAxML, which was gen-
erated using a general time-reversible model with gamma correction
(GTR-gamma) for between-site heterogeneity. Additionally, in order to
better quantify the core/accessory genomes for the isolate collection, we
made use of the large-scale Blast score ratio (LS-BSR) tool (42), which was
run against the assembled genomes of the complete data set. The matrix
generated by LS-BSR was then processed using the PanGP tool to visualize
the size of the core genome across the data set.

Comparative genomics. We identified genes of interest through liter-
ature searches and examination of annotated Salmonella genomes, pro-
ducing a set of query sequences to explore the SPI complement and to
allow us to find and extract fimbriae and effectors from our de novo
assemblies. To examine the SPI contents, we identified the genes pres-
ent within the pangenome that are carried on SPI-1 to -22, and using
these, calculated the number of genes associated with each SPI that
were represented in each sample. To examine fimbria, effector, and
flagellum genes and the O-antigen gene cluster, we located and screened
genes or regions of interest using the LS-BSR tool (42). We then visualized
the results using a simple script that converts comma-separated-value
(CSV) tables into vector graphics, developed in house (fimbriae, SPIs, and
effectors—available at https://github.com/tomrconnor/Basicscripts). To
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extract genes, we performed a Blast search across the assembled ge-
nomes for targets of interest using an approach described previously
(32), extracting sequences, aligning them with MUSCLE (43), and
generating trees using a GTR-gamma model under PhyML (44). To
confirm the presence of sopE in Paratyphi B samples, we used SRST2 in
addition to the approach described above. SRST2 (45) uses a mapping-
based approach to map sequence reads against a set of target se-
quences, identifying whether there is evidence for those sequences
within a file of sequence reads from a genomic sample. This comple-
ments the assembly-based approach and compensates for potential
limitations around the detection of genes from assemblies. The results
generated from this analysis are reproduced in Table S3 in the supple-
mental material.

Population genetic analyses. To subdivide the population, we made
use of the software package Bayesian Analysis of Population Structure
(BAPS) (26). We provided the software with the mapping-based SNP
alignment for the data set prior to the removal of recombinations and
performed a hierarchical BAPS (26) run to 2 levels with a maximum
number of 50 populations, using the second level of clustering to define
phylogroups (PGs) from the population. We imposed an artificial limita-
tion that a phylogroup must contain a minimum of 2 isolates. The analysis
was run three times to confirm the clustering results. As well as identifying
a set of PGs containing 2 isolates or more, the algorithm also identified a
number of other isolates that may or may not constitute new PGs, and we
anticipate that these candidate PGs will be confirmed (or not) over time.
To estimate a dated phylogeny, we made use of BEAST (35) 1.8 and per-
formed the analysis on an SNP alignment for the isolates that we had good
dating information on. Performing BEAST on each PG individually, we
used three chains with a total length of 100,000,000 states each and
with trees sampled every 10,000 states for each data set. To identify the
best combination of models to use, for each sample set, we performed
this analysis for constant and lognormal clock models and for con-
stant, logistics, expansion, exponential, and skyline demographic
models. For each data set, the runs that converged and generated ef-
fective sample size (ESS) values of �200 were compared, and the best
model was selected based on the AICM (Akaike’s information crite-
rion through Markov chain Monte Carlo), calculated using Tracer.
The best models determined on this basis for each run were as follows:
a lognormal clock and skyline model for PG1, a lognormal clock and
expansion model for PG2, a lognormal and skyline model for PG5, a
lognormal and skyline model for PG8/-9, and a lognormal and expan-
sion model for PG10. In the case of PG3 and -4, BEAST did produce
results, but the predicted MRCA for the best model was over 300 years
in the past, despite the fact that we only had samples going back 15 to
20 years. In both of these cases, we concluded that our sample was too
diverse to derive accurate BEAST results. In the case of PG6, we did not
have enough samples with good date information for BEAST to pro-
duce usable results. For the final selected BEAST runs, the ESS values
were ��200 in all cases. The tree files were combined using LogCom-
biner, processed using TreeAnnotator, and visualized with FigTree, all
tools that are part of or published with the BEAST package and are
freely available from http://beast.bio.ed.ac.uk.

Accession numbers. The sequence data for this project have been
deposited in the European Nucleotide Archive. Please see Table S1 for
accession numbers and metadata for the individual strains examined.
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