149 research outputs found

    Auswirkungen der Torfmooskultivierung auf die Treibhausgasbilanz von Spender-, Vermehrungs- und kommerziellen Anbauflächen sowie Bewässerungspoldern

    Get PDF
    Die Entwässerung der Moore für Landwirtschaft, Forstwirtschaft und Torfabbau hat diese Ökosysteme in Hotspots der Treibhausgasemission verwandelt. Klassische Wiedervernässungsprojekte können die natürliche Funktion der Moore als Senken des atmosphärischen Kohlenstoffs wiederherstellen, schließen jedoch eine Nutzung aus. Eine Möglichkeit, ökologische und ökonomische Ziele zu vereinen, ist die Kultivierung von Torfmoosen als qualitativ hochwertiges Substrat für den professionellen Gartenbau. Das hier vorgestellte Projekt begleitet den Versuch einer kommerziellen Torfmooskultivierung auf abgetorften Schwarztorfflächen in Niedersachsen. Dabei wird der Austausch von Kohlendioxid (CO2), Methan (CH4) und Lachgas (N2O) der gesamten moorbasierten Produktionskette von einer naturnahen Spenderfläche über die Vermehrungsfläche (einschließlich eines Bewässerungspolders) bis hin zur Kultivierungsfläche über zwei Jahre in einer hohen zeitlichen Auflösung mit der manuellen Haubenmethode gemessen. Die gewonnenen Daten werden Rückschlüsse über die Klimabilanz der Torfmooskultivierung im Vergleich zu einer naturnahen Referenzfläche und über das Potenzial der Torfmooskultivierung, degradierte Moorstandorte wieder zu Kohlenstoff- bzw. Treibhausgassenken umzuwandeln, erlauben. Im Rahmen dieses Projekts untersuchen wir den Einfluss verschiedener biotischer und abiotischer Einflussfaktoren: Zum einen werden auf der Vermehrungsfläche unterschiedliche Torfmoosarten (Sphagnum palustre L., Sphagnum papillosum Lindb. sowie eine Artenmischung) untersucht, und zum anderen wird der Effekt von Wassermanagement und (potenzieller) Erwärmung evaluiert. Dazu kommen auf den Kultivierungsflächen unterschiedliche Bewässerungstechniken zum Einsatz, während in ausgewählten Varianten zusätzlich „Open Top Chambers“ installiert wurden, um den Treibhausgasaustausch unter möglichen zukünftigen Klimawandelbedingungen abschätzen zu können. Bei der Tagung werden erste Messergebnisse präsentiert

    High soil solution carbon and nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 years of rewetting

    Get PDF
    Anthropogenic drainage of peatlands releases additional greenhouse gases to the atmosphere, and dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting drained peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases, over a period of 1 year and a period of 4 months. We chose four sites within one Atlantic bog complex: a near-natural site, two drained grasslands with different mean groundwater levels and a former peat cutting area rewetted 10 years ago. Our results clearly indicate that long-term drainage has increased the concentrations of dissolved organic carbon (DOC), ammonium, nitrate and dissolved organic nitrogen (DON) compared to the near-natural site. DON and ammonium contributed the most to the total dissolved nitrogen. Nitrate concentrations below the mean groundwater table were negligible. The concentrations of DOC and N species increased with drainage depth. In the deeply-drained grassland, with a mean annual water table of 45 cm below surface, DOC concentrations were twice as high as in the partially rewetted grassland with a mean annual water table of 28 cm below surface. The deeply drained grassland had some of the highest-ever observed DOC concentrations of 195.8 ± 77.3 mg L−1 with maximum values of >400 mg L−1. In general, dissolved organic matter (DOM) at the drained sites was enriched in aromatic moieties and showed a higher degradation status (lower DOC to DON ratio) compared to the near-natural site. At the drained sites, the C to N ratios of the uppermost peat layer were the same as of DOM in the peat profile. This suggests that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOM quality through the profile furthermore indicated that DOM moving downwards through the drained sites remained largely biogeochemically unchanged. Unlike DOM concentration, DOM quality and dissolved N species distribution were similar in the two grasslands and thus unaffected by the drainage depth. Methane production during the winter months at the drained sites was limited to the subsoil, which was quasi-permanently water saturated. The recovery of the water table in the winter months led to the production of nitrous oxide around mean water table depth at the drained sites. The rewetted and the near-natural site had comparable DOM quantity and quality (DOC to DON ratio and aromaticity). 10 years after rewetting quasi-pristine biogeochemical conditions have been re-established under continuously water logged conditions in the former peat cut area. Only the elevated dissolved methane and ammonium concentrations reflected the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies

    Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases

    Get PDF
    Disorder plays a crucial role in many systems particularly in solid state physics. However, the disorder in a particular system can usually not be chosen or controlled. We show that the unique control available for ultracold atomic gases may be used for the production and observation of disordered quantum degenerate gases. A detailed analysis of localization effects for two possible realizations of a disordered potential is presented. In a theoretical analysis clear localization effects are observed when a superlattice is used to provide a quasiperiodic disorder. The effects of localization are analyzed by investigating the superfluid fraction and the localization length within the system. The theoretical analysis in this paper paves a clear path for the future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure

    Phosphatidic acid phospholipase A1 mediates ER-Golgi transit of a family of G protein-coupled receptors

    Get PDF
    The coat protein II (COPII)-coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein-coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking

    Pseuduscalar Heavy Quarkonium Decays With Both Relativistic and QCD Radiative Corrections

    Full text link
    We estimate the decay rates of ηc2γ\eta_c\rightarrow 2\gamma, ηc2γ\eta_c'\rightarrow 2\gamma, and J/ψe+eJ/\psi\rightarrow e^+ e^-, ψe+e\psi^\prime\rightarrow e^+e^-, by taking into account both relativistic and QCD radiative corrections. The decay amplitudes are derived in the Bethe-Salpeter formalism. The Bethe-Salpeter equation with a QCD-inspired interquark potential are used to calculate the wave functions and decay widths for these ccˉc\bar{c} states. We find that the relativistic correction to the ratio RΓ(ηc2γ)/Γ(J/ψe+e)R\equiv \Gamma (\eta_c \rightarrow 2\gamma)/ \Gamma (J/ \psi \rightarrow e^+ e^-) is negative and tends to compensate the positive contribution from the QCD radiative correction. Our estimate gives Γ(ηc2γ)=(67) keV\Gamma(\eta_c \rightarrow 2\gamma)=(6-7) ~keV and Γ(ηc2γ)=2 keV\Gamma(\eta_c^\prime \rightarrow 2\gamma)=2 ~keV, which are smaller than their nonrelativistic values. The hadronic widths Γ(ηc2g)=(1723) MeV\Gamma(\eta_c \rightarrow 2g)=(17-23) ~MeV and Γ(ηc2g)=(57) MeV\Gamma(\eta_c^\prime \rightarrow 2g)=(5-7)~MeV are then indicated accordingly to the first order QCD radiative correction, if αs(mc)=0.260.29\alpha_s(m_c)=0.26-0.29. The decay widths for bbˉb\bar b states are also estimated. We show that when making the assmption that the quarks are on their mass shells our expressions for the decay widths will become identical with that in the NRQCD theory to the next to leading order of v2v^2 and αs\alpha_s.Comment: 14 pages LaTex (2 figures included

    PEAT-CLSM : A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model

    Get PDF
    Peatlands are poorly represented in global Earth system modeling frameworks. Here we add a peatland-specific land surface hydrology module (PEAT-CLSM) to the Catchment Land Surface Model (CLSM) of the NASA Goddard Earth Observing System (GEOS) framework. The amended TOPMODEL approach of the original CLSM that uses topography characteristics to model catchment processes is discarded, and a peatland-specific model concept is realized in its place. To facilitate its utilization in operational GEOS efforts, PEAT-CLSM uses the basic structure of CLSM and the same global input data. Parameters used in PEAT-CLSM are based on literature data. A suite of CLSM and PEAT-CLSM simulations for peatland areas between 40 degrees N and 75 degrees N is presented and evaluated against a newly compiled data set of groundwater table depth and eddy covariance observations of latent and sensible heat fluxes in natural and seminatural peatlands. CLSM's simulated groundwater tables are too deep and variable, whereas PEAT-CLSM simulates a mean groundwater table depth of -0.20 m (snow-free unfrozen period) with moderate temporal fluctuations (standard deviation of 0.10 m), in significantly better agreement with in situ observations. Relative to an operational CLSM version that simply includes peat as a soil class, the temporal correlation coefficient is increased on average by 0.16 and reaches 0.64 for bogs and 0.66 for fens when driven with global atmospheric forcing data. In PEAT-CLSM, runoff is increased on average by 38% and evapotranspiration is reduced by 19%. The evapotranspiration reduction constitutes a significant improvement relative to eddy covariance measurements.Peer reviewe

    The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data

    No full text
    MIRAGE (Minimum Information Required for A Glycomics Experiment) is an initiative that was created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to produce guidelines for reporting results from the diverse types of experiments and analyses used in structural and functional studies of glycans in the scientific literature. As a sequel to the guidelines for sample preparation (Struwe et al. 2016, Glycobiology, 26:907–910) and mass spectrometry  data (Kolarich et al. 2013, Mol. Cell Proteomics, 12:991–995), here we present the first version of guidelines intended to improve the standards for reporting data from glycan microarray analyses. For each of eight areas in the workflow of a glycan microarray experiment, we provide guidelines for the minimal information that should be provided in reporting results. We hope that the MIRAGE glycan microarray guidelines proposed here will gain broad acceptance by the community, and will facilitate interpretation and reproducibility of the glycan microarray results with implications in comparison of data from different laboratories and eventual deposition of glycan microarray data in international databases

    The Minimum Information Required for a Glycomics Experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data

    Get PDF
    MIRAGE (Minimum Information Required for A Glycomics Experiment) is an initiative that was created by experts in the fields of glycobiology, glycoanalytics, and glycoinformatics to produce guidelines for reporting results from the diverse types of experiments and analyses used in structural and functional studies of glycans in the scientific literature. As a sequel to the guidelines for sample preparation (Struwe et al. 2016, Glycobiology, 26, 907-910) and mass spectrometry (MS) data (Kolarich et al. 2013, Mol. Cell Proteomics. 12, 991-995), here we present the first version of guidelines intended to improve the standards for reporting data from glycan microarray analyses. For each of eight areas in the workflow of a glycan microarray experiment, we provide guidelines for the minimal information that should be provided in reporting results. We hope that the MIRAGE glycan microarray guidelines proposed here will gain broad acceptance by the community, and will facilitate interpretation and reproducibility of the glycan microarray results with implications in comparison of data from different laboratories and eventual deposition of glycan microarray data in international databases

    Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    Get PDF
    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology and geomorphology
    corecore