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Abstract. Disorder plays a crucial role in many systems particularly in solid
state physics. However, the disorder in a particular system cannot usually be
chosen or controlled. We show that the unique control available for ultracold
atomic gases may be used for the production and observation of disordered
quantum degenerate gases. A detailed analysis of localization effects for two
possible realizations of a disordered potential is presented. In a theoretical
analysis, clear localization effects are observed when a superlattice is used to
provide a quasiperiodic disorder. The effects of localization are analysed by
investigating the superfluid fraction and the localization length within the system.
The theoretical analysis in this paper paves a clear path for the future observation
of Anderson-like localization in disordered quantum gases.
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In condensed matter or statistical physics disorder is typically neither avoidable nor controllable.
It is known to lead to spectacular phenomena, such asAnderson localization [1, 2]. In this case, the
interference of waves scattered on random impurities or defects is responsible for localization. In
the so-called weak localization regime coherent backscattering may be regarded as a precursor for
Anderson localization [3]. For a recent treatment of light waves scattered by atomic ensembles,
see e.g. [4].

Cold atomic gases in magnetic and optical potentials offer the unique possibility to
introduce well-controlled disorder to the system. For this purpose several methods have been
proposed to create disordered, or quasi-disordered potentials. These proposals include the use
of speckle radiation [5]–[7], incommensurable optical lattices [7]–[11] and the interaction with
impurity atoms [12]. The unique control provided by these methods should enable novel studies
of disorder induced effects, inaccessible to other systems. In addition disorder appears also
naturally close to the surface of atom chips [13] and leads to a fragmentation of Bose–Einstein
condensates (BEC).

The first experimental attempts to systematically study the effects of disorder on BEC used a
speckle potential. The Florence group [14] observed the apparent fragmentation of the condensate
into pieces in the presence of such a random potential, resulting in characteristic stripes in the
time-of-flight density profiles. Another experiment, performed simultaneously in Florence [15]
and in Orsay [16], showed that in the presence of the random potential the expansion of the
condensate is strongly inhibited. A plausible scenario for this suppression of transport given
in [16]–[18] notes that the transport stops when the BEC encounters a random potential
modulation of sufficient height. This explanation is purely classical but it is supported by
simulations of the Gross–Pitaevskii equation (GPE).

Another disorder configuration was realized in our group by combining a one-
dimensional (1D) optical lattice and a random potential [19]. This potential configuration was
designed to mimic the situation first envisaged by Anderson [2]. However, it was shown that,
contrary to first expectations, one cannot observe Anderson localization in this experiment due
to interaction effects and the length scale of the employed disorder potential. We discuss this
situation in more detail in the following sections.
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The onset of the Bose-glass phase has recently been observed [20] for ultracold atoms
in the strongly interacting regime as suggested by [7]. For more details on strongly interacting
bosonic systems, we refer the reader to the seminal discussion in [21]. We also note that mixtures
of fermions and bosons in random optical potentials are of considerable interest [22]. One
component in such a mixture may in fact serve as the disorder in the system [23]. Here, we
concentrate solely on the weakly interacting case for bosons and investigate the circumstances
for the appearance of Anderson-like localization.

The paper is organized as follows. In the first part, we describe the experimental realization
of a weakly interacting lattice gas with a superimposed slowly varying disorder potential and
discuss the ground state properties of such a system. We observe a classical fragmentation of the
condensate which is confirmed by a theoretical analysis based on the GPE but no signature of
Anderson localization is found.

Therefore we theoretically investigate another type of disorder which has a shorter
correlation length in the second part. Following earlier suggestions [7, 9, 10] we consider
the ground state of the condensate in the presence of a pseudorandom potential introduced
by additional optical lattices of different wavelengths. Such a potential is called a superlattice
[7, 9, 10]. We discuss the influence of nonlinear interactions on the occurrence of localization
phenomena in this system.

1. Disordered lattice potential

1.1. Experimental results

Despite a variety of possible realizations of disorder, one method is particularly straightforward
to implement in current experimental setups. It consists of projecting a disordered optical dipole
potential on to the atomic sample. Following the theoretical suggestion [7] such realizations
have recently been used to investigate the effects of disorder on the ground state [14, 19] and on
the dynamics of weakly interacting BECs [14]–[16].

We perform our experiments with 87Rb BECs in an elongated magnetic trap. After laser
cooling and trapping cold atoms are loaded into a cloverleaf magnetic trap with axial and
radial frequencies of ωx = 2π × 14 Hz and ω⊥ = 2π × 200 Hz, respectively. These atoms are
evaporatively cooled to quantum degeneracy resulting in a final number of condensed atoms
between 1.5 × 104 and 8 × 104.

To carry out experiments in a disordered lattice configuration we use two optical dipole
potentials, a 1D lattice and the disordered potential. Both are derived from a Ti : Sa laser operating
at a wavelength of λ = 825 nm. Acousto-optic modulators are used to control the intensity of
each dipole potential and optical fibres are employed to deliver the light beams to the experiment.

The optical lattice is created by retro-reflection of a laser beam along the axial direction of
the magnetic trap. The depth of the optical lattice is typically set to 6.5 Er. The recoil energy Er is
given by Er = h̄2k2/2m, where m denotes the atomic mass and k corresponds to the wavenumber
of the optical lattice. The detection system is used to image the axial position of the atomic cloud
as well as the beam waist. This allows for precise positioning of the beam waist with respect to
the atomic sample.

The disorder potential is created by illuminating a randomly structured chrome substrate
with a laser beam. The partially transmitting substrate is imaged onto the atomic sample from
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Figure 1. Typical intensity distribution of the disordered optical dipole potential.
An image of the intensity distribution is shown at the top. The intensity variation
in a small region corresponding to the size of the sample is shown below.

a direction orthogonal to the optical lattice. Due to the resolution of the imaging system, the
minimal structure size of the dipole potential is limited to a few micrometres. Figure 1 shows an
image of the disorder potential at the position of the atomic cloud. We define the depth of the
disorder potential V� as twice the standard deviation of the dipole potential, analogously to [14].
Figure 2 shows the calculated autocorrelation function

g(L) = 〈Vdis(x)Vdis(x + L)〉
〈Vdis(x)〉 〈Vdis(x + L)〉 . (1)

for a typical realization of the disordered potential. In (1) the brackets denote the average over
position and Vdis(x) represents the disordered potential. Figure 2 shows that the correlation length
of the potential decays on a typical length scale of 10 µm.

After the production of the BEC, our experiments are performed as follows. The optical
lattice is ramped to its final depth within 60 ms. Subsequently the disorder potential is increased
to its final depth within another 60 ms followed by a hold time of 20 ms. Finally all potentials
are switched off and the atomic density distribution is measured after 20 ms of free expansion
using absorption imaging.

In the expanded atomic density distributions, we observe significant irregular modulations
which depend on the strength of the disordered potential. To quantify these modulations, we fit
the central peak of the expanded lattice gas with an inverted parabolic distribution and calculate
the standard deviation σ of the measured density profile from this fit. Figure 3 shows the
dependence of the standard deviation on the depth of the disordered potential. Clearly the
deviation from the unperturbed parabolic distribution grows with increased disorder strength.
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Figure 2. Autocorrelation function for a typical realization of the disordered
potential.
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Figure 3. Standard deviation σ of the observed axial density distribution from
an inverted parabola after 20 ms of free expansion, depending on the disorder
strength. The red line is a linear fit to the data which serves as a guide to the eye.

To further investigate the expansion of the disordered lattice gas, we extract the axial size of
the central momentum peak from the fits of the density with an inverted parabolic distribution.
Figure 4 shows the resulting sizes for four different configurations of the combined potential as
a function of the atom number.

The red curve shows the theoretical prediction based on the Thomas–Fermi approximation
and subsequent self-similar expansion [24] for a confinement in the magnetic trap only. The blue
curve shows an estimate for the expansion of a lattice gas in the absence of disorder. It is obtained
by using the increased axial size of the cloud due to the presence of the optical lattice [25] as a
starting point for the self-similar expansion.
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Figure 4. Size of the central peak after 20 ms of free expansion versus the number
of atoms. The clouds are released from the following potentials: magnetic trap
(red ◦), magnetic trap and disorder (black �), magnetic trap and optical lattice
(blue �), magnetic trap and disorder and lattice (green �). The lines correspond
to a theoretical prediction (see text). The lattice depth is 6.5Er and the disorder
has a depth of 0.1Er.

The addition of the disorder potential yields a more surprising result. Despite its very
small potential depth, the additional axial confinement due to the disorder potential leads to
a significant increase of the axial size after expansion. The theoretical analysis below shows
that the disordered potential induces strong deviations of the density profile from the parabolic
envelope. Therefore significant deviations from the self similar expansion are expected for
disordered gases. According to figure 3, these deviations produce irregular density modulations
and can lead to pronounced changes in the widths of the expanded clouds. The explicit form
of the expanded density distribution, however, depends strongly on the exact realization of the
disordered potential. We have used a 3D numerical simulation to check the expansion of the
disordered gas in the absence of the optical lattice. Depending on the disorder potential used, the
simulation confirms the observed behaviour qualitatively.

1.2. Theoretical analysis

In the system considered here, the disorder potential is imposed along one axis of the cloud. Hence
a 1D GPE is used to describe the basic properties of the system and to analyse parameter regimes
where localization phenomena can be observed. The GPE provides an appropriate description
of the system as long as depletion effects are small. We have estimated the number of atoms
depleted from the condensate wave-function within the Bogoliubov theory for the optical lattice
potential used in the experiment. For a total particle number of 105 atoms the fraction of depleted
atoms is less than 1%.

The 1D GPE used in our simulations is given by

i∂tφ =
[
−∂2

x

2
+

x2

2
+ V0 cos2(kx) + Vdis(x) + g|φ|2

]
φ, (2)
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where we have adopted harmonic oscillator units, i.e. h̄ωx,
√

h̄/mωx and 1/ωx as energy, length
and time units. The depth of the optical lattice is given by V0 and Vdis(x) denotes the disordered
potential. In the 3D case, the coupling constant is given by g3D = 4πh̄2a/m, where a denotes
the s-wave scattering length. For the 1D simulations, the coupling constant g is chosen such that
the Thomas–Fermi radius of the 1D gas equals the axial Thomas–Fermi radius in the 3D trap.

To simulate the experimental situation, the wavelength of the lattice is set to λ = 825 nm.
Since the harmonic trap and the disorder potential change on a length scale much greater than
the lattice spacing and the condensate healing length, l = 1/

√
8πna (where n is the condensate

density) we eliminate the lattice potential in the GPE by applying the so-called effective mass
analysis [26].

Within this analysis the GPE (2) is replaced by an equation where the optical lattice potential
is absent but the mass of a particle and the coupling constant are corrected. We assume that the
ground state solution of the GPE has the form

φ0(x) =
√

Nf(x)u0(x). (3)

Here u0(x) denotes the Bloch function corresponding to the ground state of the Schrödinger
equation with the optical lattice potential, f(x) is an envelope function and N is a normalization
factor. Substituting the ansatz (3) into equation (2) leads to the equation

µ∗f(x) =
[
− ∂2

x

2m∗ +
x2

2
+ Vdis(x) + g∗|f(x)|2

]
f(x), (4)

where m∗ and g∗ are the effective mass and the effective coupling constant, respectively. For an
optical lattice depth of 6.5Er, the effective parameters are

m∗ = 2.56 m, g∗ = 1.66 g. (5)

For the total number of N = 105 atoms (that implies g = 1800), the values of the effective
parameters suggest that one can employ the Thomas–Fermi approximation and neglect the kinetic
energy term. Then the solution of equation (4) is

|f(x)|2 = µ∗ − x2/2 − Vdis(x)

g∗ , (6)

where µ∗ is determined from the normalization condition
∫

|f(x)|2 dx = 1. (7)

In figure 5, we show a comparison of the ground state solution of the full GPE (2) and the solution
of the effective mass approach obtained within the Thomas–Fermi approximation. The squared
overlap of these solutions is greater than 0.99 and hence they are practically identical.

This analysis shows that the effect of a slowly varying disorder potential applied to BEC in
the lattice potential can be described within the Thomas–Fermi approximation. The condensate
density is modulated by the slowly varying disorder and consequently no Anderson localization
is present.
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Figure 5. Top panel: ground state solution of the GPE for a condensate in the
combined potential of the magnetic trap (ωx = 2π × 14 Hz), optical lattice and
disorder potential. Bottom panel: central part of the ground state solution of
the GPE (solid line) and the corresponding solution within the effective mass
approach (dashed line). The depth of the optical lattice is 6.5Er, while the depth
of the disorder potential 0.7Er.

These results thus bear similarity to the experiments performed in the absence of an optical
lattice [14] where a fragmentation of the BEC is induced by the disorder potential.

2. Superlattice potential

The above analysis suggests that it is necessary to introduce a disorder that changes on a length
scale smaller than the healing length to enter a regime where localization effects can be observed.
To overcome the experimental difficulties of imposing such a truly random potential the use of
pseudorandom potentials has been suggested [7, 9].

These pseudorandom potentials can be formed by one or more additional optical lattices
creating a so-called superlattice. Since cold atomic gases present a finite sized system, a suitably
chosen pseudorandom potential can provide the desired disorder [27].

Consider first a situation without interactions as discussed previously in [7]. Figure 6
shows the ground state density for a condensate in the combined potential of the magnetic trap
and the optical lattice. As expected the modulation of the density due to the lattice is visible.
The addition of two very weak lattices at wavelengths of λ = 960 and 1060 nm changes this
situation drastically as shown in figure 7. The exponential tails of the ensemble density are a
clear manifestation of Anderson-like localization.

However, it is well known that localization phenomena are strongly influenced by the
presence of interactions [28]. Therefore a simulation including these interactions is necessary to
predict parameter regimes for the observation of localization phenomena.
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Figure 6. Ground state density of a non-interacting BEC in the combined
potential of a magnetic trap (ωx = 2π × 4 Hz) and an optical lattice with a
wavelength of λ = 825 nm and a depth of 6.5Er. Note the logarithmic vertical
scale.
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Figure 7. Ground state of a non-interacting BEC in the potential of figure 6 with
two additional weak optical lattices at λ = 960 and 1060 nm with depths of 0.2Er.

2.1. Screening due to interaction

Figure 8 shows the ground state solution of the GPE for a disordered potential that changes on the
length scale of the optical lattice. While the effective mass approach can no longer be applied in
this case, the localization signatures still do not emerge. This is due to the fact that the interaction
between atoms delocalize the condensate.

The effect can be visualized by considering an effective potential. That is, once the solution
φ0 of the stationary GPE is known, the equation can be considered as a Schrödinger equation

− 1

2

∂2φ0(x)

∂x2
+ Veff(x)φ0(x) = µφ0(x), (8)

with the effective potential

Veff(x) = x2

2
+ V0 cos2(kx) + Vdis(x) + g|φ0(x)|2. (9)
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Figure 8. Top panel: ground state solution of the GPE for a condensate in the
combined potential of the magnetic trap, optical lattice and disorder potential.
Bottom panel: disorder potential Vdis(x) (dashed line) and disorder potential plus
the g|φ0(x)|2 term (solid line). The depth of the optical lattice is 6.5Er, while the
depth of the disorder potential is 0.4Er. The coupling constant is g = 1800.

As shown in figure 7, the situation without the nonlinear term g|φ0(x)|2 leads to the
observation of Anderson-like localization. However, when this term is present the effective
potential loses its disordered nature due to a screening effect. Figure 8 shows the potentials
Vdis(x) and Vdis(x) + g|φ0(x)|2. It is apparent that in the effective potential the disorder is smoothed
and screened. For typical experimental parameters, the term g|φ0(x)|2 dominates over Vdis(x)

and consequently the randomness necessary for localization is lost.
Hence a fine scale disorder alone is not sufficient to induce a non-trivial localization in the

system. Additional control of the interaction is necessary. This effect is due to the accumulation
of atoms in the wells of the random potential. In these regions of high density the nonlinear term
in the GPE effectively smoothes the potential modulations [29]. A detailed discussion of this
screening effect was recently given in [30].

2.2. Analysis of localization

We have investigated the transition from a fully delocalized to a localized ground state of a
bosonic lattice gas in two ways. Firstly, a range of interaction strengthsg|φ0(x)|2 were investigated
numerically for a fixed depth of the additional lattices. In current experiments a variation of the
interaction strength can be realized by varying the density |φ0(x)|2 of the sample or by using
a Feshbach resonance to change the coupling constant g. Our main aim was to investigate if
suitable parameters for the experimental observation of localization can be obtained. Secondly
we have investigated the onset of localization as the disorder strength is increased in a weakly
interacting BEC.

Our calculations were performed in an experimentally accessible regime with a trap
frequency of 2π × 4 Hz and a pseudorandom potential equivalent to the one used for figure 7.
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Figure 9. Ground states of the GPE for a condensate in the combined potential
of the magnetic trap, optical lattice and pseudorandom potential. The depth
of the optical lattice is 6.5Er, while the depths of the additional lattices
forming the pseudorandom potential are 0.2Er. The coupling constants g for
the panels are: 0.5 (top), 8 (middle), 256 (bottom). Note the different scales in
the panels.

For g = 0, one obtains Anderson-like localization of the ground state wavefunction which is
characterized by an exponential localization as shown in figure 7.

Figure 9 shows ground states within this potential for three values of the interaction
parameter. As g is increased the number of localization centres grows and for large values of g

they overlap considerably. This behaviour suggests that the condensate wavefunction becomes a
combination of these localized states due to nonlinear interactions. When g is of the order of 500,
one can no longer distinguish individual localized states and the clear signature of non-trivial
localization vanishes.

The case of g = 256 shown in figure 9 is equivalent to a 3D experimental realization with
trap frequencies of ωx = 2π × 4 Hz and ω⊥ = 2π × 40 Hz and N = 104 atoms. The ground state
simulation shows that characteristic features of Anderson-like localization are present, while the
experimental parameters are within reach.

In a second part of our analysis we have investigated the localization length as a function of
the disorder depth. The localization length l was obtained by fitting the individual localization
sites within the ground state density by |φ0(x)|2 ∝ exp(−|x − x0|/l).

Figure 10 shows these localization lengths for depths of the superlattice potential up to
0.2Er. The simulation was performed for interaction strengths of g = 0 and g = 8 in a trap with
ωx = 2π × 4 Hz trapping frequency. Each point in the figure is the result of a fit to peaks in
the wavefunctions depicted in figure 9. Within the scope of our simulation the amplitude of the
pseudorandom potential has to be sufficiently big to ensure that the localization length is smaller
than the size of the system.
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Figure 10. Localization length as a function of the depth of the additional optical
lattice potentials for two interaction strengths g = 0 (◦) and g = 8 (•). The depth
of the main optical lattice is 6.5Er.

This analysis clearly shows two distinct features of localization. Firstly, the localization
length strongly depends on the depth of the superlattice. Even a very small added pseudorandom
potentials leads to localization in small localization sites. This confirms the expected non-
perturbative character of localization. Secondly the analysis shows that the interaction strength
only has a small effect on the localization length in the strongly localized regime as shown in
figure 10. This can also be inferred from figure 9 taking into account the different axis scales.

2.3. Analysis of superfluidity

To further investigate the effect of interactions we have analysed the superfluid fraction of the
sample as a function of the coupling constant g in a potential box.

The superfluid fraction is obtained by calculating the response of the condensed sample to
twisted boundary conditions [31]. Within this model the superfluid fraction acquires additional
kinetic energy due to a spatially varying phase. A comparison of the energy with and without
phase twist yields the superfluid fraction which is defined as fs = 2(E0(v) − E0(0))/Nv2. Here
E0(v) is the ground state energy when a velocity field v is imposed on the system (i.e. we compute
the ground state solution in the form φ0(x) exp(ivx) where φ0(x) fulfils periodic boundary
conditions) [31]. In our calculations, the size of the potential box was chosen to match the
size of the atomic cloud in the harmonic potential. It is important to note that this method only
represents one possible definition of superfluidity [31, 32]. Within the GPE framework, it does
not include higher excitation modes or atoms depleted from the condensate [10].

Figure 11 shows the superfluid fraction as a function of the coupling constant. In the presence
of an optical lattice some loss of the superfluid fraction is observed, but even for small interaction
strengths a considerable superfluid fraction remains. This behaviour drastically changes when
the pseudorandom disorder created by the two additional optical lattices at 960 and 1060 nm
is added. At low values of the coupling constant g the superfluid fraction strongly decreases,
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Figure 11. Superfluid fraction as a function of the coupling constant g for a
fixed superlattice depth of 0.2Er. Full circles (•) are obtained for a box potential
corresponding to a trap frequency of ωx = 2π × 14 Hz and open circles (◦) to
ωx = 2π × 4 Hz. Full squares (�) show the case without a superlattice potential
for ωx = 2π × 14 Hz.

indicating the onset of localization. However, our analysis shows that the superfluid fraction
remains large for the coupling constants g in typical experimental realizations, indicating the
absence of Anderson-like localization.

2.4. Detection of localization

The observation of features of Anderson-like localization may pose considerable experimental
difficulties. Figure 12 shows the density distributions on a linear scale. In an experimental
measurement the exponential nature of the density variation within the localization sites will
probably not be visible. Most likely, limitations due to the imaging optics will inhibit the
observation of individual localization sites for experimentally accessible densities.

However, the onset of localization leads to a considerable change in the ground state
density when a small pseudorandom potentials is added. If the localization effect is indeed
non-perturbative, it may be possible to detect this change of the density even for small added
pseudorandom potentials.

A second avenue for the detection of localization is a time-of-flight measurement of the
velocity distribution. The simulated density distribution after 20 ms of free expansion is shown
in figure 13. Despite a clear difference in the ground state wavefunction, the width of the envelope
of the zero-momentum peak is strikingly similar for all realizations. The results represent a clear
distinction from the classical case, where the width of the expanded cloud depends strongly on
the interaction parameter g. We conclude that the width of the zero-momentum peak mainly
depends on the localization length l, which does not vary significantly as a function of g in the
simulations presented here.

These two options show a path towards the observation of Anderson-like localization in the
regime discussed.
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Figure 12. Ground states of the GPE (previously shown in figure 9 on a
logarithmic scale) for a condensate in the combined potential of the magnetic
trap, optical lattice and pseudorandom potential. The coupling constant g for the
panels are: 0.5 (top), 8 (middle), 256 (bottom).
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Figure 13. Atomic density after 20 ms of free expansion for a condensate
prepared in the states shown in figure 12 (left column) and without disorder
potential (right column). Oscillator units corresponding to a trap frequency of
2π × 4 Hz are used.
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3. Conclusion

We have presented a detailed theoretical analysis of two configurations for the production and
observation of disordered quantum degenerate gases. This analysis showed that localization
effects are not expected for the configurations involving a slowly varying disordered dipole
potential. However, clear localization effects and a reduction of the superfluid fraction were
observed when a superlattice was used to provide the disorder. These effects can be suppressed
due to screening by nonlinear interactions within the sample. The dependence of the localization
features on these interactions and on the depth of the superlattice potential were analysed in detail.
It was shown that an analysis of the time-of-flight signal will allow for a conclusive evaluation
of possible localization phenomena in the sample.

Within the experimental part a realization of a disordered lattice gas is described in detail.
An analysis of the time-of-flight signal allows for a conclusive evaluation of possible localization
phenomena in the sample. In accordance with the theoretical findings however, no localization
effects are observed.

The theoretical work within this paper paves a clear path for the future observation of
Anderson-like localization in cold atomic samples.
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