509 research outputs found

    Generation of terahertz pulses with arbitrary elliptical polarization

    Full text link
    We employ two different methods to generate controllable elliptical polarization of teraherz (THz) pulses. First, THz pulses are generated via optical rectification in nonlinear crystals using a pair of temporally separated and perpendicularly polarized optical pulses. The THz ellipticity is controlled by adjusting the relative time delay and polarization of the two optical pulses. We generate mixed polarization states of single-cycle THz pulses using ZnTe, and elliptically polarized multicycle THz pulses in periodically poled lithium niobate crystals. Second, we generate elliptically polarized THz pulses by making a THz “wave plate” using a combination of a wire-grid THz polarizer and a mirror to transform linearly polarized multicycle THz pulses into elliptical polarization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87838/2/221111_1.pd

    Metagenomic next-generation sequencing of samples from pediatric febrile illness in Tororo, Uganda.

    Get PDF
    Febrile illness is a major burden in African children, and non-malarial causes of fever are uncertain. In this retrospective exploratory study, we used metagenomic next-generation sequencing (mNGS) to evaluate serum, nasopharyngeal, and stool specimens from 94 children (aged 2-54 months) with febrile illness admitted to Tororo District Hospital, Uganda. The most common microbes identified were Plasmodium falciparum (51.1% of samples) and parvovirus B19 (4.4%) from serum; human rhinoviruses A and C (40%), respiratory syncytial virus (10%), and human herpesvirus 5 (10%) from nasopharyngeal swabs; and rotavirus A (50% of those with diarrhea) from stool. We also report the near complete genome of a highly divergent orthobunyavirus, tentatively named Nyangole virus, identified from the serum of a child diagnosed with malaria and pneumonia, a Bwamba orthobunyavirus in the nasopharynx of a child with rash and sepsis, and the genomes of two novel human rhinovirus C species. In this retrospective exploratory study, mNGS identified multiple potential pathogens, including 3 new viral species, associated with fever in Ugandan children

    Equine Arteritis Virus Uses Equine CXCL16 as an Entry Receptor

    Get PDF
    Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from \u3c 3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated that EAV preferentially infects subpopulations of horse CD14+ monocytes expressing EqCXCL16 and that infection of these cells is significantly reduced by pretreatment with Gp anti-EqCXCL16 pAb. The collective data from this study provide confirmatory evidence that the transmembrane form of EqCXCL16 likely plays a major role in EAV host cell entry processes, possibly acting as a primary receptor molecule for this virus

    Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation of hand function is challenging, and only few studies have investigated robot-assisted rehabilitation focusing on distal joints of the upper limb. This paper investigates the feasibility of using the <it>HapticKnob</it>, a table-top end-effector device, for robot-assisted rehabilitation of grasping and forearm pronation/supination, two important functions for activities of daily living involving the hand, and which are often impaired in chronic stroke patients. It evaluates the effectiveness of this device for improving hand function and the transfer of improvement to arm function.</p> <p>Methods</p> <p>A single group of fifteen chronic stroke patients with impaired arm and hand functions (Fugl-Meyer motor assessment scale (FM) 10-45/66) participated in a 6-week 3-hours/week rehabilitation program with the <it>HapticKnob</it>. Outcome measures consisted primarily of the FM and Motricity Index (MI) and their respective subsections related to distal and proximal arm function, and were assessed at the beginning, end of treatment and in a 6-weeks follow-up.</p> <p>Results</p> <p>Thirteen subjects successfully completed robot-assisted therapy, with significantly improved hand and arm motor functions, demonstrated by an average 3.00 points increase on the FM and 4.55 on the MI at the completion of the therapy (4.85 FM and 6.84 MI six weeks post-therapy). Improvements were observed both in distal and proximal components of the clinical scales at the completion of the study (2.00 FM wrist/hand, 2.55 FM shoulder/elbow, 2.23 MI hand and 4.23 MI shoulder/elbow). In addition, improvements in hand function were observed, as measured by the Motor Assessment Scale, grip force, and a decrease in arm muscle spasticity. These results were confirmed by motion data collected by the robot.</p> <p>Conclusions</p> <p>The results of this study show the feasibility of this robot-assisted therapy with patients presenting a large range of impairment levels. A significant homogeneous improvement in both hand and arm function was observed, which was maintained 6 weeks after end of the therapy.</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Antiangiogenic Activity of 2-Deoxy-D-Glucose

    Get PDF
    During tumor angiogenesis, endothelial cells (ECs) are engaged in a number of energy consuming biological processes, such as proliferation, migration, and capillary formation. Since glucose uptake and metabolism are increased to meet this energy need, the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) on in vitro and in vivo angiogenesis were investigated.In cell culture, 2-DG inhibited EC growth, induced cytotoxicity, blocked migration, and inhibited actively forming but not established endothelial capillaries. Surprisingly, 2-DG was a better inhibitor of these EC properties than two more efficacious glycolytic inhibitors, 2-fluorodeoxy-D-glucose and oxamate. As an alternative to a glycolytic inhibitory mechanism, we considered 2-DG's ability to interfere with endothelial N-linked glycosylation. 2-DG's effects were reversed by mannose, an N-linked glycosylation precursor, and at relevant concentrations 2-DG also inhibited synthesis of the lipid linked oligosaccharide (LLO) N-glycosylation donor in a mannose-reversible manner. Inhibition of LLO synthesis activated the unfolded protein response (UPR), which resulted in induction of GADD153/CHOP and EC apoptosis (TUNEL assay). Thus, 2-DG's effects on ECs appeared primarily due to inhibition of LLOs synthesis, not glycolysis. 2-DG was then evaluated in two mouse models, inhibiting angiogenesis in both the matrigel plug assay and the LH(BETA)T(AG) transgenic retinoblastoma model.In conclusion, 2-DG inhibits endothelial cell angiogenesis in vitro and in vivo, at concentrations below those affecting tumor cells directly, most likely by interfering with N-linked glycosylation rather than glycolysis. Our data underscore the importance of glucose metabolism on neovascularization, and demonstrate a novel approach for anti-angiogenic strategies

    Temsirolimus combined with cyclophosphamide and etoposide for pediatric patients with relapsed/refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium trial (TACL 2014-001)

    Get PDF
    Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in acute lymphoblastic leukemia (ALL). The TACL2014-001 phase I trial of the mTOR inhibitor temsirolimus in combination with cyclophosphamide and etoposide was performed in children and adolescents with relapsed/refractory ALL. Temsirolimus was administered intravenously (IV) on days 1 and 8 with cyclophosphamide 440 mg/m2 and etoposide 100 mg/m2 IV daily on days 1-5. The starting dose of temsirolimus was 7.5 mg/m2 (DL1) with escalation to 10 mg/m2 (DL2), 15 mg/m2 (DL3), and 25 mg/m2 (DL4). PI3K/mTOR pathway inhibition was measured by phosphoflow cytometry analysis of peripheral blood specimens from treated patients. Sixteen heavily-pretreated patients were enrolled with 15 evaluable for toxicity. One dose-limiting toxicity of grade 4 pleural and pericardial effusions occurred in a patient treated at DL3. Additional dose-limiting toxicities were not seen in the DL3 expansion or DL4 cohort. Grade 3/4 non-hematologic toxicities occurring in three or more patients included febrile neutropenia, elevated alanine aminotransferase, hypokalemia, mucositis, and tumor lysis syndrome and occurred across all doses. Response and complete were observed at all dose levels with a 47% overall response rate and 27% complete response rate. Pharmacodynamic correlative studies demonstrated dose-dependent inhibition of PI3K/mTOR pathway phosphoproteins in all studied patients. Temsirolimus at doses up to 25 mg/m2 with cyclophosphamide and etoposide had an acceptable safety profile in children with relapsed/refractory ALL. Pharmacodynamic mTOR target inhibition was achieved and appeared to correlate with temsirolimus dose. Future testing of next-generation PI3K/mTOR pathway inhibitors with chemotherapy may be warranted to increase response rates in children with relapsed/refractory ALL

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia
    corecore