16 research outputs found

    Nucleocapsid protein-mediated maturation of dimer initiation complex of full-length SL1 stemloop of HIV-1: sequence effects and mechanism of RNA refolding

    Get PDF
    Specific binding of HIV-1 viral protein NCp7 to a unique 35-base RNA stem-loop SL1 is critical for formation and packaging of the genomic RNA dimer found within HIV-1 virions. NCp7 binding stimulates refolding of SL1 from a metastable kissing dimer (KD) into thermodynamically stable linear dimer (LD). Using UV melting, gel electrophoresis and heteronuclear NMR, we investigated effects of various site-specific mutations within the full-length SL1 on temperature- or NCp7-induced refolding in vitro. Refolding involved intramolecular melting of SL1 stems but not dissociation of the intermolecular KD interface. Refolding required only two NCp7 molecules per KD but was limited by the amount of NCp7 present, implying that the protein does not catalytically promote refolding. Efficient refolding depended strictly on the presence and, to a lesser degree, on sequence of a highly conserved G-rich internal loop that normally limits thermal stability of the SL1 stem. Adding two base pairs to the lower stem created a hyperstable SL1 mutant that failed to refold, even when bound by NCp7 at high stoichiometries. NMR analysis of these kinetically trapped mutant RNA–protein complexes indicated that NCp7 initiates refolding by dissociating base pairs in the upper stem of SL1. This study illuminates structural transitions critical for HIV-1 assembly and replication

    Resolving fast and slow motions in the internal loop containing stem-loop 1 of HIV-1 that are modulated by Mg(2+) binding: role in the kissing–duplex structural transition

    Get PDF
    Stem loop 1 (SL1) is a highly conserved hairpin in the 5′-leader of the human immunodeficiency virus type I that forms a metastable kissing dimer that is converted during viral maturation into a stable duplex with the aid of the nucleocapsid (NC) protein. SL1 contains a highly conserved internal loop that promotes the kissing–duplex transition by a mechanism that remains poorly understood. Using NMR, we characterized internal motions induced by the internal loop in an SL1 monomer that may promote the kissing–duplex transition. This includes micro-to-millisecond secondary structural transitions that cause partial melting of three base-pairs above the internal loop making them key nucleation sites for exchanging strands and nanosecond rigid-body stem motions that can help bring strands into spatial register. We show that while Mg(2+) binds to the internal loop and arrests these internal motions, it preserves and/or activates local mobility at internal loop residues G272 and G273 which are implicated in NC binding. By stabilizing SL1 without compromising the accessibility of G272 and G273 for NC binding, Mg(2+) may increase the dependence of the kissing–duplex transition on NC binding thus preventing spontaneous transitions from taking place and ensuring that viral RNA and protein maturation occur in concert

    Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: Implications for triplet expansion diseases

    No full text
    We have embedded the hexameric triplet repeats (CAG)(6) and (CTG)(6) between two (GC)(3) domains to produce two 30-mer hairpins with the sequences d[(GC)(3)(CAG)(6)(GC)(3)] and d[(GC)(3)(CTG)(6)(GC)(3)]. This construct reduces the conformational space available to these repetitive DNA sequences. We find that the (CAG)(6) and (CTG)(6) repeats form stable, ordered, single-stranded structures. These structures are stabilized at 62°C by an average enthalpy per base of 1.38 kcal·mol(−1) for the CAG triplet and 2.87 kcal·mol(−1) for the CTG triplet, while being entropically destabilized by 3.50 cal·K(−1)·mol(−1) for the CAG triplet and 7.6 cal·K(−1)·mol(−1) for the CTG triplet. Remarkably, these values correspond, respectively, to 1/3 (for CAG) and 2/3 (for CTG) of the enthalpy and entropy per base values associated with Watson–Crick base pairs. We show that the presence of the loop structure kinetically inhibits duplex formation from the two complementary 30-mer hairpins, even though the duplex is the thermodynamically more stable state. Duplex formation, however, does occur at elevated temperatures. We propose that this thermally induced formation of a more stable duplex results from thermal disruption of the single-stranded order, thereby allowing the complementary domains to associate (perhaps via “kissing hairpins”). Our melting profiles show that, once duplex formation has occurred, the hairpin intermediate state cannot be reformed, consistent with our interpretation of kinetically trapped hairpin structures. The duplex formed by the two complementary oligonucleotides does not have any unusual optical or thermodynamic properties. By contrast, the very stable structures formed by the individual single-stranded triplet repeat sequences are thermally and thermodynamically unusual. We discuss this stable, triplet repeat, single-stranded structure and its interconversion with duplex in terms of triplet expansion diseases
    corecore