1,519 research outputs found

    Exhaustive families of representations of CC^*-algebras associated to NN-body Hamiltonians with asymptotically homogeneous interactions

    Full text link
    We continue the analysis of algebras introduced by Georgescu, Nistor and their coauthors, in order to study NN-body type Hamiltonians with interactions. More precisely, let YY be a linear subspace of a finite dimensional Euclidean space XX, and vYv_Y be a continuous function on X/YX/Y that has uniform homogeneous radial limits at infinity. We consider, in this paper, Hamiltonians of the form H=Δ+YSvYH = - \Delta + \sum_{Y \in S} v_Y, where the subspaces YY belong to some given family S of subspaces. We prove results on the spectral theory of the Hamiltonian when SS is any family of subspaces and extend those results to other operators affiliated to a larger algebra of pseudo-differential operators associated to the action of XX introduced by Connes. In addition, we exhibit Fredholm conditions for such elliptic operators. We also note that the algebras we consider answer a question of Melrose and Singer.Comment: 5 page

    Waves and instabilities in rotating free surface flows

    Get PDF
    The stability properties of the rotating free surface flow in a cylindrical container is studied using a global stability approach, considering succesively three models. For the case of solid body rotation (Newton’s bucket), all eigenmodes are found to be stable, and are classified into three families : gravity waves, singular inertial modes, and Rossby waves. For the case of a potential flow, an instability is found. The mechanism is explained as a resonance between gravity waves and centrifugal waves, and is thought to be at the origin of the ”rotating polygon instability” observed in experiments where the flow is driven by rotation of the bottom plate (see [9]). Finally, we give some preliminary results concerning a third model : the Rankine vortex

    Synchronized flutter of two slender flags

    Get PDF
    The interactions and synchronization of two parallel and slender flags in a uniform axial flow are studied in the present paper by generalizing Lighthill's Elongated Body Theory (EBT) and Lighthill's Large Amplitude Elongated Body Theory (LAEBT) to account for the hydrodynamic coupling between flags. The proposed method consists in two successive steps, namely the reconstruction of the flow created by a flapping flag within the LAEBT framework and the computation of the fluid force generated by this nonuniform flow on the second flag. In the limit of slender flags in close proximity, we show that the effect of the wakes have little influence on the long time coupled-dynamics and can be neglected in the modeling. This provides a simplified framework extending LAEBT to the coupled dynamics of two flags. Using this simplified model, both linear and large amplitude results are reported to explore the selection of the flapping regime as well as the dynamical properties of two side-by-side slender flags. Hydrodynamic coupling of the two flags is observed to destabilize the flags for most parameters, and to induce a long-term synchronization of the flags, either in-phase or out-of-phase.Comment: 14 pages, 10 figures, to appear in J. Fluid Mec

    Rotating Polygon Instability of a Swirling Free Surface Flow

    Get PDF
    We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990) and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)] in terms of resonant interactions between gravity waves on the outer part of the surface and centrifugal waves on the inner part. Our model is based on potential flow theory, linearized around a potential vortex flow with a free surface for which we show that unstable resonant states appear. Limiting our attention to the lowest order mode of each type of wave and their interaction, we obtain an analytically soluble model, which, together with estimates of the circulation based on angular momentum balance, reproduces the main features of the experimental phase diagram. The generality of our arguments implies that the instability should not be limited to flows with a rotating bottom (implying singular behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container

    The Anatomy of a Scientific Rumor

    Get PDF
    The announcement of the discovery of a Higgs boson-like particle at CERN will be remembered as one of the milestones of the scientific endeavor of the 21st century. In this paper we present a study of information spreading processes on Twitter before, during and after the announcement of the discovery of a new particle with the features of the elusive Higgs boson on 4th July 2012. We report evidence for non-trivial spatio-temporal patterns in user activities at individual and global level, such as tweeting, re-tweeting and replying to existing tweets. We provide a possible explanation for the observed time-varying dynamics of user activities during the spreading of this scientific "rumor". We model the information spreading in the corresponding network of individuals who posted a tweet related to the Higgs boson discovery. Finally, we show that we are able to reproduce the global behavior of about 500,000 individuals with remarkable accuracy.Comment: 11 pages, 8 figure

    Generation of three-dimensional patterns through wave interaction in a model of free surface swirling flow

    Get PDF
    The free surface flow in a cylindrical tank over a rotating bottom is known to support spectacular three-dimensional patterns, including deformation of the inner free surface into the shape of rotating polygons, and sloshing behavior of the upper free surface (e.g. Iga et al., FDR 2014, same issue). Through a stability analysis of a simplified model of this flow, we show that such patterns can be explained as a resonance mechanism involving different families of waves. The approach extends a previous work (Tophoj et al., PRL 2013) which explained the rotating polygons as an interaction between gravity waves and centrifugal waves, under the assumption that the base flow can be modeled as a potential vortex. We show that this previous model is justified for strong rotation rates (Dry-Potential case), and that for weaker rotations it can be improved by introducing an inner vortex core in solid-body rotation, which either extends to the center of the plate (Wet case) or surrounds a dry central region (Dry-Composite case). The study of this improved model predicts two new kind of instabilities. The first occurs at low rotations (Wet case) and results from an interaction between gravity waves and the Kelvin-Kirchhoff wave (namely, oscillation of the boundary of the vortex core). This instability is proposed to be at the origin of the sloshing phenomenon. The second new instability occurs, for moderate rotations, (Dry-Composite case) as an interaction between gravity waves and a "Kelvin-Centrifugal" wave characterized by deformation of the inner surface and the vortex core boundary in opposite directions. This instability exists for all azimuthal wave numbers starting from m = 1, this case corresponding to a "monogon" pattern

    Séquence didactique à partir de Un hivernage dans les glaces de J. Verne

    No full text
    International audienceLes auteurs proposent une séquence didactique associant exploration du lexique, étude morphosyntaxique (grammaire, conjugaison), et analyse thématique de passages textuels.L'attention se porte sur les corrélations entre l'emploi du mode subjonctif et la dramatisation du récit ; on quitte ainsi la localité des phrases pour la globalité textuelle
    corecore