14 research outputs found

    Defining the three cell lineages of the human blastocyst by single-cell RNA-seq

    No full text
    Here, we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. For example, we identify several genes exclusively expressed in the human pluripotent epiblast, including the transcription factor KLF17. Key components of the TGF-β signalling pathway, including NODAL, GDF3, TGFBR1/ALK5, LEFTY1, SMAD2, SMAD4 and TDGF1, are also enriched in the human epiblast. Intriguingly, inhibition of TGF-β signalling abrogates NANOG expression in human epiblast cells, consistent with a requirement for this pathway in pluripotency. Although the key trophectoderm factors Id2, Elf5 and Eomes are exclusively localized to this lineage in the mouse, the human orthologues are either absent or expressed in alternative lineages. Importantly, we also identify genes with conserved expression dynamics, including Foxa2/FOXA2, which we show is restricted to the primitive endoderm in both human and mouse embryos. Comparison of the human epiblast to existing embryonic stem cells (hESCs) reveals conservation of pluripotency but also additional pathways more enriched in hESCs. Our analysis highlights significant differences in human preimplantation development compared with mouse and provides a molecular blueprint to understand human embryogenesis and its relationship to stem cells

    CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization

    Get PDF
    Calcium-dependent mechanisms are critical for successful completion of fertilization. Here, we demonstrate that CRISP1, a sperm protein involved in mammalian fertilization, is also present in the female gamete and capable of modulating key sperm Ca2+ channels. Specifically, we show that CRISP1 is expressed by the cumulus cells that surround the egg and that fertilization of cumulus-oocyte complexes from CRISP1-knockout females is impaired due to a failure of sperm to penetrate the cumulus. We provide evidence that CRISP1 stimulates sperm orientation by modulating sperm hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, patch-clamping of sperm revealed that CRISP1 has the ability to regulate CatSper, the principal sperm Ca2+ channel involved in hyperactivation and essential for fertility. Given the critical role of Ca2+ forsperm motility, we propose a novel CRISP1-mediated fine-tuning mechanism to regulatesperm hyperactivation and orientation for successful penetration of the cumulus during fertilization.Fil: Ernesto, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Weigel Muñoz, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Battistone, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Vasen, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Martínez López, Pablo. Universidad Nacional Autónoma de México; MéxicoFil: Orta, Gerardo . Universidad Nacional Autónoma de México; MéxicoFil: Figueiras Fierro, Dulce. Universidad Nacional Autónoma de México; MéxicoFil: de la Vega Beltrán, José L. . Universidad Nacional Autónoma de México; MéxicoFil: Moreno, Ignacio A. . Fertility Patagonia; ArgentinaFil: Guidobaldi, Héctor Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Biología Celular y Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Giojalas, Laura Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Biología Celular y Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Darszon, Alberto . Universidad Nacional Autónoma de México; MéxicoFil: Cohen, Debora Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Cuasnicu, Patricia Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentin
    corecore