93 research outputs found

    A Review of Global Satellite-Derived Snow Products

    Get PDF
    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow

    U.S. State‐Supported Dental Schools: Financial Projections and Implications

    Full text link
    This article examines the impact of financial trends in state‐supported dental schools on full‐time clinical faculty; the diversity of dental students and their career choices; investments in physical facilities; and the place of dentistry in research universities. The findings of our study are the following: the number of students per full‐time clinical faculty member increased; the three schools with the lowest revenue increases lost a third of their full‐time clinical faculty; more students are from wealthier families; most schools are not able to adequately invest in their physical plant; and more than half of schools have substantial NIH‐funded research programs. If current trends continue, the term “crisis” will describe the situation faced by most dental schools. Now is the time to build the political consensus needed to develop new and more effective strategies to educate the next generation of American dentists and to keep dental education primarily based in research universities. The future of the dental profession and the oral health of the American people depend on it.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153587/1/jddj002203372008722suppltb04487x.pd

    A Blended Global Snow Product using Visible, Passive Microwave and Scatterometer Satellite Data

    Get PDF
    A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to map areas of snow that are actively melting

    Annual Greenland accumulation rates (2009–2012) from airborne snow radar

    Get PDF
    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2–6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009–2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models

    Observational and Dynamical Characterization of Main-Belt Comet P/2010 R2 (La Sagra)

    Full text link
    We present observations of comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS 1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed from August 2010 through February 2011, while a dust trail aligned with the object's orbit plane is also observed from December 2010 through August 2011. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between August 2010 and December 2010, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H_R=17.9+/-0.2 mag, corresponding to a nucleus radius of ~0.7 km, assuming an albedo of p=0.05. Using optical spectroscopy, we find no evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q_CN<6x10^23 mol/s, from which we infer an H2O production rate of Q_H2O<10^26 mol/s. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is likely representative of other objects in the same region of the main belt, though the relatively close proximity of the 13:6 mean-motion resonance with Jupiter and the (3,-2,-1) three-body mean-motion resonance with Jupiter and Saturn mean that dynamical instability on larger timescales cannot be ruled out.Comment: 23 pages, 13 figures, accepted for publication in A

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements

    Get PDF
    The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (μatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices
    corecore