25 research outputs found

    A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements

    Get PDF
    The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (μatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Looking into the Future of Ocean Sciences: an IOC Perspective

    No full text
    As the only United Nations organization specializing in ocean sciences, the Intergovernmental Oceanographic Commission (IOC) has the responsibility to promote basic marine scientific investigations globally. IOC has always given special attention to planning and forecasting new developments in ocean sciences, taking into account both the steady evolution of knowledge and fundamental changes leading to major scientific breakthroughs. Following that tradition, and in honor of IOC\u27s fiftieth anniversary, we focus on two distinct objectives in this article. First, we provide a glimpse of past IOC scientific achievements. Second, we share IOC\u27s vision for a marine science strategy for the next 15 years. For that purpose, IOC has identified three critical elements that will likely provide the scientific and technical means to redefine the future of ocean sciences: (1) science drivers, (2) ocean instrumentation and technological developments, and (3) strategic frameworks for cooperation. The third element is of particular importance because research at unprecedented geographic scales is required to improve our understanding of climate change and ecosystem functioning, including biodiversity conservation and management options. Because this effort calls for extensive national and international efforts, we also discuss the role of comprehensive international core projects

    Age determinations on sediment cores from the North Atlantic

    No full text
    Sediments in the North Atlantic ocean contain as eries of layers that are rich in ice-rafted debris and unusally poor in foraminifera. Here we present evidence that the most recent six of the 'Heinrich layers', deposited between 14,000 and 70,000 years ago, record marked decreases in sea surface temperature and salinity, decreases in the flux of planktonic forminifera to the sediments, and short-lived, massive discharges of icebergs originating in eastern Canada. The path of the icebergs, clearly marked by the presence of ice-rafted detrital carbonate, can be traced for more than 3,000 km - a remarkable distance, attesting to extreme cooling of surface waters and enormous amounts of drifiting ice. The cause of these extreme events is puzzling. They may reflect repated rapid advances of the Laurentide ice sheet, perhaps associated with reductions in air temperatures, yet temperature records from Greenland ice cores appear to exhibit only a weak corresponding signal. Moreover, the 5-10,000-yr intervals between the events are inconsistent with Milankovitch orbital periodicities, raising the question of what the ultimate cause of the postulated cooling may have been
    corecore