8,636 research outputs found

    Nuclear Spin-Isospin Correlations, Parity Violation, and the fπf_\pi Problem

    Get PDF
    The strong interaction effects of isospin- and spin-dependent nucleon-nucleon correlations observed in many-body calculations are interpreted in terms of a one-pion exchange mechanism. Including such effects in computations of nuclear parity violating effects leads to enhancements of about 10%. A larger effect arises from the one-boson exchange nature of the parity non-conserving nucleon- nucleon interaction, which depends on both weak and strong meson-nucleon coupling constants. Using values of the latter that are constrained by nucleon-nucleon phase shifts leads to enhancements of parity violation by factors close to two. Thus much of previously noticed discrepancies between weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v

    Constraints on Parity-Even Time Reversal Violation in the Nucleon-Nucleon System and Its Connection to Charge Symmetry Breaking

    Full text link
    Parity-even time reversal violation (TRV) in the nucleon-nucleon interaction is reconsidered. The TRV ρ\rho-exchange interaction on which recent analyses of measurements are based is necessarily also charge-symmetry breaking (CSB). Limits on its strength gˉρ\bar{g}_\rho relative to regular ρ\rho-exchange are extracted from recent CSB experiments in neutron-proton scattering. The result gˉρ6.7×103\bar{g}_\rho\le 6.7\times 10^{-3} (95% CL) is considerably lower than limits inferred from direct TRV tests in nuclear processes. Properties of a1a_1-exchange and limit imposed by the neutron EDM are briefly discussed.Comment: RevTex, 8 pages. Factor ten error in cited neutron EDM corrected, discussion and two references adde

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    FACT -- The G-APD revolution in Cherenkov astronomy

    Full text link
    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (IEEE-NSS/MIC), 201

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV

    Full text link
    A search for a Higgs boson decaying into invisible particles is performed using the data collected at LEP by the L3 experiment at centre-of-mass energies of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1 and 176.4 pb^-1. The observed candidates are consistent with the expectations from Standard Model processes. In the hypothesis that the production cross section of this Higgs boson equals the Standard Model one and the branching ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set at 95% confidence level

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    corecore