29 research outputs found

    The Microbiome of Temporal Arteries

    Get PDF
    Objective: A role for microorganisms in giant cell arteritis (GCA) has long been suspected. We describe the microbiomes of temporal arteries from patients with GCA and controls. Methods: Temporal artery biopsies from patients suspected to have GCA were collected under aseptic conditions and snap-frozen. Fluorescence in situ hybridization (FISH) and long-read 16S rRNA-gene sequencing was used to examine microbiomes of temporal arteries. Taxonomic classification of bacterial sequences was performed to the genus level and relative abundances were calculated. Microbiome differential abundances were analyzed by principal coordinate analysis (PCoA) with comparative Unifrac distances and predicted functional profiling using PICRUSt. Results : Forty-seven patients, including 9 with biopsy-positive GCA, 15 with biopsy-negative GCA and 23 controls without GCA, were enrolled. FISH for bacterial DNA revealed signal in the arterial media. Beta, but not alpha, diversity differed between GCA and control temporal arteries (P = 0.042). Importantly, there were no significant differences between biopsy-positive and biopsy-negative GCA (P > 0.99). The largest differential abundances seen between GCA and non-GCA temporal arteries included Proteobacteria (P), Bifidobacterium (g), Parasutterella (g) and Granulicatella (g) [Log 2-fold change > 4]. Conclusion: Temporal arteries are not sterile, but rather are inhabited by a community of bacteria. We have demonstrated that there are microbiomic differences between GCA and non-GCA temporal arteries, but not between biopsy-positive and biopsy-negative GCA

    Microbiomes of Inflammatory Thoracic Aortic Aneurysms Due to Giant Cell Arteritis and Clinically Isolated Aortitis Differ From Those of Non-Inflammatory Aneurysms

    Get PDF
    Objective: We sought to characterize microbiomes of thoracic aortas from patients with non-infectious aortitis due to giant cell arteritis (GCA) and clinically isolated aortitis (CIA) and to compare them to non-inflammatory aorta aneurysm controls. We also compared microbiomes from concurrently processed and separately reported temporal arteries (TA) and aortas. Methods: From 220 prospectively enrolled patients undergoing surgery for thoracic aorta aneurysm, 49 were selected. Inflammatory and non-inflammatory cases were selected based on ability to match for age (+/-10 years), gender, and race. Biopsies were collected under aseptic conditions and snap-frozen. Taxonomic classification of bacterial sequences was performed to the genus level and relative abundances were calculated. Microbiome differential abundances were analyzed by principal coordinates analysis. Results : Forty-nine patients with thoracic aortic aneurysms (12 CIA, 14 GCA, 23 non-inflammatory aneurysms) were enrolled. Alpha (P = 0.018) and beta (P = 0.024) diversity differed between specimens from aortitis cases and controls. There were no significant differences between CIA and GCA (P > 0.7). The largest differential abundances between non-infectious aortitis and non-inflammatory control samples includedEnterobacteriaceae, Phascolarctobacterium, Acinetobactor, Klebsiella, and Prevotella. Functional metagenomic predictions with PICRUSt revealed enrichment of oxidative phosphorylation and porphyrin metabolism pathways and downregulation of transcription factor pathways in aortitis compared to controls. Microbiomes of aortic samples differed significantly from temporal artery samples from a companion study, in both control and GCA groups (P = 0.0002). Conclusion: Thoracic aorta aneurysms, far from being sterile, contain unique microbiomes that differ from those found in temporal arteries. The aorta microbiomes are most similar between aneurysms that were associated with inflammation, GCA, and CIA, but differed from those associated with non-inflammatory etiologies. These findings are promising in that they indicate that microbes may play a role in the pathogenesis of aortitis-associated aneurysms or non-inflammatory aneurysms by promoting or protecting against inflammation. However, we cannot rule out that these changes are related to alterations in tissue substrate that favor secondary changes in microbial communities

    The landscape of somatic copy-number alteration across human cancers

    Get PDF
    available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Vancomycin

    No full text

    Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles

    No full text
    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency. and the function of these alleles remain undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic. One rare KRAS allele, D33E, displayed tumorigenicity and constitutive activation of known RAS effector pathways. By comparing gene expression changes induced upon expression of wild type and mutant alleles, we inferred the activity of specific alleles. Since alleles found to be mutated only once in 5,338 tumors rendered cells tumorigenic, these observations underscore the value of integrating genomic information with functional studies

    Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles

    No full text
    UnlabelledCancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic. One rare KRAS allele, D33E, displayed tumorigenicity and constitutive activation of known RAS effector pathways. By comparing gene expression changes induced upon expression of wild-type and mutant alleles, we inferred the activity of specific alleles. Because alleles found to be mutated only once in 5,338 tumors rendered cells tumorigenic, these observations underscore the value of integrating genomic information with functional studies.SignificanceExperimentally inferring the functional status of cancer-associated mutations facilitates the interpretation of genomic information in cancer. Pooled in vivo screen and gene expression profiling identified functional variants and demonstrated that expression of rare variants induced tumorigenesis. Variant phenotyping through functional studies will facilitate defining key somatic events in cancer. Cancer Discov; 6(7); 714-26. ©2016 AACR.See related commentary by Cho and Collisson, p. 694This article is highlighted in the In This Issue feature, p. 681

    Cross-Sector Collaboration, Institutional Gaps, and Fragility: The Role of Social Innovation Partnerships in a Conflict-Affected Region

    Get PDF
    The authors aim to contribute to the literature on subsistence marketplaces and the marketing field in general by exploring social innovation partnerships in a fragile country characterized by institutional gaps—specifically, by considering the role of cross-sector collaboration in conflict-affected areas. The empirical setting consists of coffee partnerships in the Democratic Republic of the Congo, where the authors collected data from and about companies, nongovernmental organizations, and cooperatives using both primary and secondary sources, including a field trip, interviews, and group discussions with farmers and their families. They show results at the organizational level (i.e., buildup of managerial capacities, transfer of financial-administrative skills, and improved functioning of cooperatives), the farmer level (i.e., better prices, livelihoods, and access to markets as well as increased revenues), and the community level (i.e., reduced tensions and collaboration between previously hostile groups as well as the creation of new governance modalities). The study suggests that partnerships may offer a systemic approach to addressing institutional gaps, which is necessary in such “extreme” contexts. The authors close with a discussion of further implications for research and public policy

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe
    corecore