303 research outputs found

    Mindfulness Based Socio-Emotional Development Activities For the School of Hope

    Get PDF
    Treball Final de Màster Universitari en Estudis Internacionals de Pau, Conflictes i Desenvolupament (Pla de 2013). Codi: SBG120. Curs acadèmic: 2018/2019This is a project proposal created to promote the socio-emotional development of the Students of the School of Hope. The School of Hope is a non-formal education program run by Boat Refugee Foundation in Moria, a refugee camp on the island of Lesvos, Greece. The project consists of activities that can be done within the current curriculum and are based in Mindfulness within the frameworks of trauma informed care and nonviolent communication

    Mobile Application Adoption by Young Adults: A Social Network Perspective

    Get PDF
    The use of mobile applications, defined as small programs that run on a mobile device and perform tasks ranging from banking to gaming and web browsing, is exploding. Within the past two years, the industry has grown from essentially nothing to a $2 billion marketplace, but adoption rates are still on the rise. Using network theory, this study examines how the adoption of mobile apps among young consumers is influenced by others in their social network. The results suggest that the likelihood of adoption and usage of mobile apps increases with their use by the consumer\u27s strongest relationship partner. In addition, the authors find marginal support for the hypothesis that the adoption of mobile apps will be more strongly influenced by a consumer\u27s social contacts (friends, compared to family members), possibly due to their closer similarity to the consumer. Managerial and theoretical implications are discussed

    Chemical Stability and Reaction Kinetics of Two Thiamine Salts (Thiamine Mononitrate and Thiamine Chloride Hydrochloride) in Solution

    Get PDF
    Two types of thiamine (vitamin B1) salts, thiamine mononitrate (TMN) and thiamine chloride hydrochloride (TClHCl), are used to enrich and fortify food products. Both of these thiamine salt forms are sensitive to heat, alkali, oxygen, and radiation, but differences in stability between them have been noted. It was hypothesized that stability differences between the two thiamine salts could be explained by differences in solubility, solution pH, and activation energies for degradation. This study directly compared the stabilities of TMN and TClHCl in solution over time by documenting the impact of concentration and storage temperature on thiamine degradation and calculating reaction kinetics. Solutions were prepared containing five concentrations of each thiamine salt (1, 5, 10, 20, and 27 mg/mL), and three additional concentrations of TClHCl: 100, 300, and 500 mg/mL. Samples were stored at 25, 40, 60, 70, and 80 °C for up to 6 months. Degradation was quantified over time by high-performance liquid chromatography, and percent thiamine remaining was used to calculate reaction kinetics. First-order reaction kinetics were found for both TMN and TClHCl. TMN degraded significantly faster than TClHCl at all concentrations and temperatures. For example, in 27 mg/mL solutions after 5 days at 80 °C, only 32% of TMN remained compared to 94% of TClHCl. Activation energies and solution pHs were 21–25 kcal/mol and pH 5.36–6.96 for TMN and 21–32 kcal/mol and pH 1.12–3.59 for TClHCl. TClHCl degradation products had much greater sensory contributions than TMN degradation products, including intense color change and potent aromas, even with considerably less measured vitamin loss. Different peak patterns were present in HPLC chromatograms between TMN and TClHCl, indicating different degradation pathways and products. The stability of essential vitamins in foods is important, even more so when degradation contributes to sensory changes, and this study provides a direct comparison of the stability of the two thiamine salts used to fortify foods in environments relevant to the processing and shelf-life of many foods

    Selective Neurofilament (SMI-32, FNP-7 and N200) Expression in Subpopulations of Layer V Pyramidal Neurons In Vivo and In Vitro

    Get PDF
    There are two main types of layer V pyramidal neurons in rat cortex. Type I neurons have tufted apical dendrites extending into layer I, produce bursts of action potentials and project to subcortical targets (spinal cord, superior colliculus and pontine nuclei). Type II neurons have apical dendrites, which arborize in layers II-IV, do not produce bursts of action potentials and project to ipsilateral and contralateral cortex. The specific expression of different genes and proteins in these two distinct layer V neurons is unknown. To distinguish between distinct subpopulations, fluorescent microspheres were injected into subcortical targets (labeling type I neurons) or primary somatosensory cortex (labeling type II neurons) of adult rats. After transport, cortical sections were processed for immunohistochemistry using various antibodies. This study demonstrated that antigens recognized by SMI-32, N200 and FNP-7 antibodies were only expressed in subcortical (type I) — but not in contralateral (type II) — projecting neurons. NR1, NR2a/b, PLCβ1, BDNF, NGF and TrkB antigens were highly expressed in all neuronal subpopulations examined. Organotypic culture experiments demonstrated that the development of neurofilament expression and laminar specificity does not depend on the presence of the subcortical targets. This study suggests specific markers for the subcortical projecting layer V neuron subpopulation

    Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modellilng

    Get PDF
    Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s<SU-1</SU decrease seaward to around 4.5 km s<SU-1</SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel

    Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro

    Get PDF
    There are two main types of layer V pyramidal neurons in rat cortex. Type I neurons have tufted apical dendrites extending into layer I, produce bursts of action potentials and project to subcortical targets (spinal cord, superior colliculus and pontine nuclei). Type II neurons have apical dendrites, which arborize in layers II-IV, do not produce bursts of action potentials and project to ipsilateral and contralateral cortex. The specific expression of different genes and proteins in these two distinct layer V neurons is unknown. To distinguish between distinct subpopulations, fluorescent microspheres were injected into subcortical targets (labeling type I neurons) or primary somatosensory cortex (labeling type II neurons) of adult rats. After transport, cortical sections were processed for immunohistochemistry using various antibodies. This study demonstrated that antigens recognized by SMI-32, N200 and FNP-7 antibodies were only expressed in subcortical (type I)--but not in contralateral (type II)--projecting neurons. NR1, NR2a/b, PLCbeta1, BDNF, NGF and TrkB antigens were highly expressed in all neuronal subpopulations examined. Organotypic culture experiments demonstrated that the development of neurofilament expression and laminar specificity does not depend on the presence of the subcortical targets. This study suggests specific markers for the subcortical projecting layer V neuron subpopulations

    Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core

    Get PDF
    Large and abrupt temperature oscillations during the last glacial period, known as Dansgaard‐Oeschger (DO) events, are clearly observed in the Greenland ice core record. Here we present a new high‐resolution chemical (2 mm) and stable isotope (20 mm) record from the North Greenland Ice Core Project (NGRIP) ice core at the onset of one of the most prominent DO events of the last glacial, DO‐8, observed ∼38,000 years ago. The unique, subannual‐resolution NGRIP record provides a true sequence of change during a DO warming with detailed annual layer counting of very high depth resolution geochemical measurements used to determine the exact duration of the transition. The continental ions, indicative of long‐range atmospheric loading and dustiness from East Asia, are the first to change, followed by the snow accumulation, the moisture source conditions, and finally the atmospheric temperature in Greenland. The sequence of events shows that atmospheric and oceanic source and circulation changes preceded the DO warming by several years

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection

    Regulation of Na(+) channel inactivation by the DIII and DIV voltage-sensing domains.

    Get PDF
    Functional eukaryotic voltage-gated Na(+) (NaV) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical NaV channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair NaV channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery

    Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic): Palaeoenvironmental records of fluid venting and bottom currents

    Get PDF
    Ferromanganese nodule fields and hardgrounds have recently been discovered in the Cadiz Contourite Channel in the Gulf of Cadiz (850–1000 m). This channel is part of a large contourite depositional system generated by the Mediterranean Outflow Water. Ferromanganese deposits linked to contourites are interesting tools for palaeoenviromental studies and show an increasing economic interest as potential mineral resources for base and strategic metals. We present a complete characterisation of these deposits based on submarine photographs and geophysical, petrographic, mineralogical and geochemical data. The genesis and growth of ferromanganese deposits, strongly enriched in Fe vs. Mn (av. 39% vs. 6%) in this contourite depositional system result from the combination of hydrogenetic and diagenetic processes. The interaction of the Mediterranean Outflow Water with the continental margin has led to the formation of Late Pleistocene–Holocene ferromanganese mineral deposits, in parallel to the evolution of the contourite depositional system triggered by climatic and tectonic events. The diagenetic growth was fuelled by the anaerobic oxidation of thermogenic hydrocarbons (δ13CPDB=−20 to −37‰) and organic matter within the channel floor sediments, promoting the formation of Fe–Mn carbonate nodules. High 87Sr/86Sr isotopic values (up to 0.70993±0.00025) observed in the inner parts of nodules are related to the influence of radiogenic fluids fuelled by deep-seated fluid venting across the fault systems in the diapirs below the Cadiz Contourite Channel. Erosive action of the Mediterranean Outflow Water undercurrent could have exhumed the Fe–Mn carbonate nodules, especially in the glacial periods, when the lower core of the undercurrent was more active in the study area. The growth rate determined by 230Thexcess/232Th was 113±11 mm/Ma, supporting the hypothesis that the growth of the nodules records palaeoenvironmental changes during the last 70 ka. Ca-rich layers in the nodules could point to the interaction between the Mediterranean Outflow Water and the North Atlantic Deep Water during the Heinrich events. Siderite–rhodochrosite nodules exposed to the oxidising seabottom waters were replaced by Fe–Mn oxyhydroxides. Slow hydrogenetic growth of goethite from the seawaters is observed in the outermost parts of the exhumed nodules and hardgrounds, which show imprints of the Mediterranean Outflow Water with low 87Sr/86Sr isotopic values (down to 0.70693±0.00081). We propose a new genetic and evolutionary model for ferromanganese oxide nodules derived from ferromanganese carbonate nodules formed on continental margins above the carbonate compensation depth and dominated by hydrocarbon seepage structures and strong erosive action of bottom currents. We also compare and discuss the generation of ferromanganese deposits in the Cadiz Contourite Channel with that in other locations and suggest that our model can be applied to ferromanganiferous deposits in other contouritic systems affected by fluid venting
    corecore