374 research outputs found

    Segmentation of Loops from Coronal EUV Images

    Get PDF
    We present a procedure which extracts bright loop features from solar EUV images. In terms of image intensities, these features are elongated ridge-like intensity maxima. To discriminate the maxima, we need information about the spatial derivatives of the image intensity. Commonly, the derivative estimates are strongly affected by image noise. We therefore use a regularized estimation of the derivative which is then used to interpolate a discrete vector field of ridge points ``ridgels'' which are positioned on the ridge center and have the intrinsic orientation of the local ridge direction. A scheme is proposed to connect ridgels to smooth, spline-represented curves which fit the observed loops. Finally, a half-automated user interface allows one to merge or split, eliminate or select loop fits obtained form the above procedure. In this paper we apply our tool to one of the first EUV images observed by the SECCHI instrument onboard the recently launched STEREO spacecraft. We compare the extracted loops with projected field lines computed from almost-simultaneously-taken magnetograms measured by the SOHO/MDI Doppler imager. The field lines were calculated using a linear force-free field model. This comparison allows one to verify faint and spurious loop connections produced by our segmentation tool and it also helps to prove the quality of the magnetic-field model where well-identified loop structures comply with field-line projections. We also discuss further potential applications of our tool such as loop oscillations and stereoscopy.Comment: 13 pages, 9 figures, Solar Physics, online firs

    A Compressed Sensing Approach to 3D Weak Lensing

    Full text link
    (Abridged) Weak gravitational lensing is an ideal probe of the dark universe. In recent years, several linear methods have been developed to reconstruct the density distribution in the Universe in three dimensions, making use of photometric redshift information to determine the radial distribution of lensed sources. In this paper, we aim to address three key issues seen in these methods; namely, the bias in the redshifts of detected objects, the line of sight smearing seen in reconstructions, and the damping of the amplitude of the reconstruction relative to the underlying density. We consider the problem under the framework of compressed sensing (CS). Under the assumption that the data are sparse in an appropriate dictionary, we construct a robust estimator and employ state-of-the-art convex optimisation methods to reconstruct the density contrast. For simplicity in implementation, and as a proof of concept of our method, we reduce the problem to one-dimension, considering the reconstruction along each line of sight independently. Despite the loss of information this implies, we demonstrate that our method is able to accurately reproduce cluster haloes up to a redshift of z=1, deeper than state-of-the-art linear methods. We directly compare our method with these linear methods, and demonstrate minimal radial smearing and redshift bias in our reconstructions, as well as a reduced damping of the reconstruction amplitude as compared to the linear methods. In addition, the CS framework allows us to consider an underdetermined inverse problem, thereby allowing us to reconstruct the density contrast at finer resolution than the input data.Comment: Submitted to A&A (6 July 2011

    The relationship between substructure in 2D X-ray surface brightness images and weak lensing mass maps of galaxy clusters: A simulation study

    Full text link
    In this paper, we undertake a study to determine what insight can be reliably gleaned from the comparison of the X-ray and the weak lensing mass maps of galaxy clusters. We do this by investigating the 2D substructure within three high-resolution cosmological simulations of galaxy clusters. Our main results focus on non-radiative gas dynamics, but we also consider the effects of radiative cooling at high redshift. For our analysis, we use a novel approach, based on unsharp-masking, to identify substructures in 2D surface mass density and X-ray surface brightness maps. At full resolution (~ 15 h^-1 kpc), this technique is capable of identifying almost all self-bound dark matter subhaloes with M>10^12 h^-1 M_sun. We also report a correlation between the mass of a subhalo and the area of its corresponding 2D detection; such a correlation, once calibrated, could provide a useful estimator for substructure mass. Comparing our 2D mass and X-ray substructures, we find a surprising number of cases where the matching fails: around one third of galaxy-sized substructures have no X-ray counterpart. Some interesting cases are also found at larger masses, in particular the cores of merging clusters where the situation can be complex. Finally, we degrade our mass maps to what is currently achievable with weak-lensing observations (~100 h^-1 kpc at z=0.2). While the completeness mass limit increases by around an order of magnitude, a mass-area correlation remains. Our paper clearly demonstrates that the next generation of lensing surveys should start to reveal a wealth of information on cluster substructure. (Abridged)Comment: 30 pages, 27 figures, 3 tables. Accepted for publication in MNRAS. High resolution version available at http://www.physics.ox.ac.uk/users/powell/clustersubs_highres.pd

    Probing the accelerating Universe with radio weak lensing in the JVLA Sky Survey

    Get PDF
    We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be conducted at L-band and with high-resolution (A-array configuration), as the optimal survey strategy from the point of view of weak lensing science. Such a survey will build on the unique strengths of the JVLA and will remain unsurpassed in terms of its combination of resolution and sensitivity until the advent of the Square Kilometre Array. We identify the best fields on the JVLA-accessible sky from the point of view of overlapping with existing deep optical and near infra-red data which will provide crucial redshift information and facilitate a host of additional compelling multi-wavelength science.Comment: Submitted in response to NRAO's recent call for community white papers on the VLA Sky Survey (VLASS

    The C313Y Piedmontese mutation decreases myostatin covalent dimerisation and stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myostatin is a key negative regulator of muscle growth and development, whose activity has important implications for the treatment of muscle wastage disorders. Piedmontese cattle display a double-muscled phenotype associated with the expression of C313Y mutant myostatin. <it>In vivo</it>, C313Y myostatin is proteolytically processed, exported and circulated extracellularly but fails to correctly regulate muscle growth. The C313Y mutation removes the C313-containing disulphide bond, an integral part of the characteristic TGF-β cystine-knot structural motif.</p> <p>Results</p> <p>Here we present <it>in vitro </it>analysis of the structure and stability of the C313Y myostatin protein that reveals significantly decreased covalent dimerisation for C313Y myostatin accompanied by a loss of structural stability compared to wild type. The C313Y myostatin growth factor, processed from full length precursor protein, fails to inhibit C2C12 myoblast proliferation in contrast to wild type myostatin. Although structural modeling shows the substitution of tyrosine causes structural perturbation, biochemical analysis of additional disulphide mutants, C313A and C374A, indicates that an intact cystine-knot motif is a major determinant in myostatin growth factor stability and covalent dimerisation.</p> <p>Conclusions</p> <p>This research shows that the cystine-knot structure is important for myostatin dimerisation and stability, and that disruption of this structural motif perturbs myostatin signaling.</p

    ISOCAM survey and dust models of 3CR radio galaxies and quasars

    Full text link
    We present a survey of all 3CR sources imaged with ISOCAM onboard the Infrared Space Observatory (ISO). For the source, we present spatially integrated mid--infrared (MIR, 5 - 18mic.) fluxes measured from newly calibrated ISOCAM images. In total, we detected 68 AGN of the 3CR catalogue, at redshifts z < 2.5. The one with the highest redshift is 4C+72.26 at z = 3.53. ISOCAM data are combined with other photometric measurements to construct the spectral energy distribution (SED) from optical to radio wavelengths. In order to describe dust emission we apply new radiative transfer models. By varying three parameters, luminosity, effective size and extinction, we obtain a fit to the SED for our objects. In the MIR the hot dust component is mainly due to small grains and PAHs. In the models, a type 1 AGN is represented by a compact dust distribution, the dust is therefore very warm and emission of PAHs is weak because of photo--destruction. In AGNs of type 2, the dust is relatively colder but PAH bands are strong.Comment: Accepted by A&A, 30pages, 10 Figures, available at: http://www.eso.org/~rsiebenm/FTP/3CRisocam.pd

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Get PDF
    We report the discovery of high-energy (E>100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma ray Space Telescope. The positional center of the gamma-ray source is only ~3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of ~5'.The spatial distribution of gamma-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F_gamma = (2.10+-0.23)x 10^{-7} ph (>100 MeV) cm^{-2} s^{-1} and Gamma = 2.17+-0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period.Previous EGRET observations gave an upper limit of F_gamma 100 MeV) cm^{-2} s^{-1} to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.Comment: 27 pages, 7 figures, Accepted for publication in the Astrophysical Journa

    Bright AGN Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey

    Full text link
    The first three months of sky-survey operation with the Fermi Gamma Ray Space Telescope (Fermi) Large Area Telescope (LAT) reveals 132 bright sources at |b|>10 deg with test statistic greater than 100 (corresponding to about 10 sigma). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known AGNs. This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of 57 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 5 blazars with uncertain classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy peaked BL Lacs (HBLs), sources which were so far hard to detect in the GeV range. Another 10 lower-confidence associations are found. Only thirty three of the sources, plus two at |b|>10 deg, were previously detected with EGRET, probably due to the variable nature of these sources. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak gamma-ray fluxes is observed. Blazar log N - log S and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BLLacs. The contribution of LAT-blazars to the total extragalactic gamma-ray intensity is estimated.Comment: Submitted to ApJ. Not yet refereed. 61 pages, 26 figure
    corecore