2,032 research outputs found

    Energetic radiation and the sulfur chemistry of protostellar envelopes: Submillimeter interferometry of AFGL 2591

    Get PDF
    CONTEXT: The chemistry in the inner few thousand AU of accreting envelopes around young stellar objects is predicted to vary greatly with far-UV and X-ray irradiation by the central star. Aim We search for molecular tracers of high-energy irradiation by the protostar in the hot inner envelope. METHODS: The Submillimeter Array (SMA) has observed the high-mass star forming region AFGL 2591 in lines of CS, SO, HCN, HCN(v2=1), and HC15N with 0.6" resolution at 350 GHz probing radial scales of 600-3500 AU for an assumed distance of 1 kpc. The SMA observations are compared with the predictions of a chemical model fitted to previous single-dish observations. RESULTS: The CS and SO main peaks are extended in space at the FWHM level, as predicted in the model assuming protostellar X-rays. However, the main peak sizes are found smaller than modeled by nearly a factor of 2. On the other hand, the lines of CS, HCN, and HC15N, but not SO and HCN(v2=1), show pedestal emissions at radii of about 3500 AU that are not predicted. All lines except SO show a secondary peak within the approaching outflow cone. A dip or null in the visibilities caused by a sharp decrease in abundance with increasing radius is not observed in CS and only tentatively in SO. CONCLUSIONS: The emission of protostellar X-rays is supported by the good fit of the modeled SO and CS amplitude visibilities including an extended main peak in CS. The broad pedestals can be interpreted by far-UV irradiation in a spherically non-symmetric geometry, possibly comprising outflow walls on scales of 3500 -- 7000 AU. The extended CS and SO main peaks suggest sulfur evaporation near the 100 K temperature radius.Comment: Astronomy and Astrophysics, in pres

    Mechanical Property Characterization of Mouse Zona Pellucida

    Get PDF
    Previous intracytoplasmic sperm injection (ICSI) studies have indicated significant variation in ICSI success rates among different species. In mouse ICSI, the zona pellucida (ZP) undergoes a hardening process at fertilization in order to prevent subsequent sperm from penetrating. There have been few studies investigating changes in the mechanical properties of mouse ZP post fertilization. To characterize mouse ZP mechanical properties and quantitate the mechanical property differences of the ZP before and after fertilization, a microelectromechanical systems-based multiaxis cellular force sensor has been developed. A microrobotic cell manipulation system employing the multiaxis cellular force sensor is used to conduct mouse ZP force sensing, establishing a quantitative relationship between applied forces and biomembrane structural deformations on both mouse oocytes and embryos. An analytical biomembrane elastic model is constructed to describe biomembrane mechanical properties. The characterized elastic modulus of embryos is 2.3 times that of oocytes, and the measured forces for puncturing embryo ZP are 1.7 times those for oocyte ZP. The technique and model presented in this paper can be applied to investigations into the mechanical properties of other biomembranes, such as the plasma membrane of oocytes or other cell types

    Psoriatic arthritis: An assessment of clinical, biochemical and radiological features in a single-centre South African cohort

    Get PDF
    Background. Although psoriatic arthritis (PsA) is a well-documented clinical entity, epidemiological, clinical and radiological studies of South African (SA) patients are scarce.Objectives. To assess clinical, biochemical and radiological features in a single-centre SA cohort.Methods. We conducted a prospective assessment of the clinical, biochemical and radiological features of 384 consecutive patients with PsA seen at the rheumatology clinic at Prince Mshiyeni Memorial Hospital, Durban, SA, between January 2007 and December 2013. Patients were assessed at enrolment and 6 months after enrolment. They were classified into five groups as described by Moll and Wright, being entered into the group that best described the clinical manifestations. Clinicopathological characteristics recorded at enrolment were age at the time of examination, racial background, personal and family medical history, age and symptoms at the onset of PsA, pattern of joint involvement, joint pain, and the relationship between joint pain and the onset of PsA.Results. Of the patients, 59.1% had a polyarticular presentation indistinguishable from rheumatoid arthritis, 19.0% had distal interphalangeal involvement, 9.1% had spondyloarthropathy, 11.9% had oligoarthritis and 0.9% had arthritis mutilans. The epidemiological trends (male/female ratio 1.45:1, mean age at onset of arthritis 50.2 (standard deviation 11.8) years, female preponderance in the polyarticular group and male preponderance in the spondyloarthropathy and oligoarticular groups) were similar to trends published elsewhere. A notable characteristic of our cohort was the complete absence of black South Africans with PsA.Conclusions. The complete absence of black South Africans with PsA is interesting. We anticipate that our findings will prompt genetic studies to isolate both protective and susceptibility genes for further elucidating PsA

    The subsurface habitability of small, icy exomoons

    Get PDF
    Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims: We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be "subsurface habitable". We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods: We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat. In doing so, we determined at which depth, if any, ice melts and a subsurface ocean forms. Results: We find an analytical expression between the moon's physical and orbital characteristics and the melting depth. Since this expression directly relates icy moon observables to the melting depth, it allows us to swiftly put an upper limit on the melting depth for any given moon. We reproduce the existence of Enceladus' subsurface ocean; we also find that the two largest moons of Uranus (Titania and Oberon) could well sustain them. Our model predicts that Rhea does not have liquid water. Conclusions: Habitable exomoon environments may be found across an exoplanetary system, largely irrespective of the distance to the host star. Small, icy subsurface habitable moons may exist anywhere beyond the snow line. This may, in future observations, expand the search area for extraterrestrial habitable environments beyond the circumstellar habitable zone

    Water destruction by X-rays in young stellar objects

    Full text link
    We study the H2O chemistry in star-forming environments under the influence of a central X-ray source and a central far ultraviolet (FUV) radiation field. The gas-phase water chemistry is modeled as a function of time, hydrogen density and X-ray flux. To cover a wide range of physical environments, densities between n_H = 10^4-10^9 cm^-3 and temperatures between T = 10-1000 K are studied. Three different regimes are found: For T < 100 K, the water abundance is of order 10^-7-10^-6 and can be somewhat enhanced or reduced due to X-rays, depending on time and density. For 100 K < T < 250 K, H2O is reduced from initial x(H2O) ~ 10^-4 following ice evaporation to x(H2O) ~ 10^-6 for F_X > 10^-3 ergs s-1 cm^-2 (t = 10^4 yrs) and for F_X > 10^-4 ergs s^-1 cm^-2 (t = 10^5 yrs). At higher temperatures (T > 250 K) and hydrogen densities, water can persist with x(H2O) ~ 10^-4 even for high X-ray fluxes. The X-ray and FUV models are applied to envelopes around low-mass Class 0 and I young stellar objects (YSOs). Water is destroyed in both Class 0 and I envelopes on relatively short timescales (t ~ 5000 yrs) for realistic X-ray fluxes, although the effect is less prominent in Class 0 envelopes due to the higher X-ray absorbing densities there. FUV photons from the central source are not effective in destroying water. The average water abundance in Class I sources for L_X > 10^27 ergs s^-1 is predicted to be x(H2O) < 10^-6.Comment: 12 pages, 14 figures, Accepted for publication in A&

    Water in massive star-forming regions: HIFI observations of W3 IRS5

    Get PDF
    We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22 202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T > 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O 111-000 spectra in our models. We estimate water abundances of 10^{-8} to 10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two protostellar objects contributing to the emission is discussed.Comment: Accepted for publication in the A&A HIFI special issu

    Detection of 6 K gas in Ophiuchus D

    Full text link
    Cold cores in interstellar molecular clouds represent the very first phase in star formation. The physical conditions of these objects are studied in order to understand how molecular clouds evolve and how stellar masses are determined. The purpose of this study is to probe conditions in the dense, starless clump Ophichus D (Oph D). The ground-state (1(10)-1(11)) rotational transition of ortho-H2D+ was observed with APEX towards the density peak of Oph D. The width of the H2D+ line indicates that the kinetic temperature in the core is about 6 K. So far, this is the most direct evidence of such cold gas in molecular clouds. The observed H2D+ spectrum can be reproduced with a hydrostatic model with the temperature increasing from about 6 K in the centre to almost 10 K at the surface. The model is unstable against any increase in the external pressure, and the core is likely to form a low-mass star. The results suggest that an equilibrium configuration is a feasible intermediate stage of star formation even if the larger scale structure of the cloud is thought to be determined by turbulent fragmentation. In comparison with the isothermal case, the inward decrease in the temperature makes smaller, i.e. less massive, cores susceptible to externally triggered collapse.Comment: 7 pages, 5 figures, accepted for Astronomy and Astrophysic

    Physical structure and CO abundance of low-mass protostellar envelopes

    Get PDF
    We present 1D radiative transfer modelling of the envelopes of a sample of 18 low-mass protostars and pre-stellar cores with the aim of setting up realistic physical models, for use in a chemical description of the sources. The density and temperature profiles of the envelopes are constrained from their radial profiles obtained from SCUBA maps at 450 and 850 micron and from measurements of the source fluxes ranging from 60 micron to 1.3 mm. The densities of the envelopes within ~10000 AU can be described by single power-laws r^{-p} for the class 0 and I sources with p ranging from 1.3 to 1.9, with typical uncertainties of +/- 0.2. Four sources have flatter profiles, either due to asymmetries or to the presence of an outer constant density region. No significant difference is found between class 0 and I sources. The power-law fits fail for the pre-stellar cores, supporting recent results that such cores do not have a central source of heating. The derived physical models are used as input for Monte Carlo modelling of submillimeter C18O and C17O emission. It is found that class I objects typically show CO abundances close to those found in local molecular clouds, but that class 0 sources and pre-stellar cores show lower abundances by almost an order of magnitude implying that significant depletion occurs for the early phases of star formation. While the 2-1 and 3-2 isotopic lines can be fitted using a constant fractional CO abundance throughout the envelope, the 1-0 lines are significantly underestimated, possibly due to contribution of ambient molecular cloud material to the observed emission. The difference between the class 0 and I objects may be related to the properties of the CO ices.Comment: 21 pages, 12 figures, accepted by A&

    The Different Structures of the Two Classes of Starless Cores

    Full text link
    We describe a model for the thermal and dynamical equilibrium of starless cores that includes the radiative transfer of the gas and dust and simple CO chemistry. The model shows that the structure and behavior of the cores is significantly different depending on whether the central density is either above or below about 10^5 cm-3. This density is significant as the critical density for gas cooling by gas-dust collisions and also as the critical density for dynamical stability, given the typical properties of the starless cores. The starless cores thus divide into two classes that we refer to as thermally super-critical and thermally sub-critical.This two-class distinction allows an improved interpretation of the different observational data of starless cores within a single model.Comment: ApJ in pres

    Distribution and excitation of thermal methanol in 6.7 GHz maser bearing star-forming regions. I. The nearby source Cepheus A

    Get PDF
    Context. Candidate high-mass star-forming regions can be identified through the occurrence of 6.7 GHz methanol masers. In these sources the methanol abundance of the gas must be enhanced, because the masers require a considerable methanol path length. The place and time of origin of this enhancement is not well known. Similarly, it is debated in which of the physical components of the high-mass star-forming region the masers are located.Aims. The aim of this study is to investigate the distribution and excitation of the methanol gas around Cep A and to describe the physical conditions of the region. In addition the large-scale abundance distribution is determined to understand the morphology and kinematics of star-forming regions in which methanol masers occur.Methods. The spatial distribution of methanol is studied by mapping the line emission, as well as the column density and excitation temperature, which are estimated using rotation diagrams. For a limited number of positions the parameters are checked with non-LTE models. Furthermore, the distribution of the methanol abundance is derived in comparison with archival dust continuum maps.Results. Methanol is detected over a 0.3x0.15 pc area centred on the Cep A HW2 source and shows an outflow signature. Most of the gas can be characterized by a moderately warm rotation temperature (30-60 K). At the central position two velocity components are detected with different excitation characteristics, the first related to the large-scale outflow. The second component, uniquely detected at the central location, is probably associated with the maser emission on much smaller scales of 2 ''. A detailed analysis reveals that the highest densities and temperatures occur for these inner components. In the inner region the dust and gas are shown to have different physical parameters.Conclusions. Abundances of methanol in the range 10(-9)-10(-7) are inferred, with the abundance peaking at the maser position. The geometry of the large-scale methanol is in accordance with previous determinations of the Cep A geometry, in particular those from methanol masers. The dynamical and chemical time-scales are consistent with a scenario where the methanol originates in a single driving source associated with the HW2 object and the masers in its equatorial region.</p
    • …
    corecore