289 research outputs found

    Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis

    Get PDF
    Transferrin, an iron-transporting serum glycoprotein, is efficiently taken up into cells by the process of receptor-mediated endocytosis. Transferrin receptors are found on the surface of most proliferating cells, in elevated numbers on erythroblasts and on many kinds of tumors. The efficient cellular mechanism for uptake of transferrin has been subverted for the delivery of low-molecular-weight drugs, protein toxins, and liposomes by linkage of these agents to transferrin or to anti-transferrin receptor antibodies. Linkage may be via chemical conjugation procedures or by the generation of chimeric fusion proteins. Transferrin conjugated to DNA-binding compounds (e.g. polycations or intercalating agents) has been successfully used for the import of DNA molecules into cells. High-level gene expression is obtained only if endosome-disruptive agents such as influenza hemagglutinin peptides or adenovirus particles are included which release the DNA complex from intracellular vesicles into the cytoplasm

    Expression of the zinc finger gene EVI-1 in ovarian and other cancers.

    Get PDF
    The EVI-1 gene was originally detected as an ectopic viral insertion site and encodes a nuclear zinc finger DNA-binding protein. Previous studies showed restricted EVI-1 RNA or protein expression during ontogeny; in a kidney and an endometrial carcinoma cell line; and in normal murine oocytes and kidney cells. EVI-1 expression was also detected in a subset of acute myeloid leukaemias (AMLs) and myelodysplasia. Because EVI-1 is expressed in the urogenital tract during development, we examined ovarian cancers and normal ovaries for EVI-1 RNA expression using reverse transcription polymerase chain reaction (RT-PCR) and RNAase protection. Chromosome abnormalities were examined using karyotypes and whole chromosome 3 and 3q26 fluorescence in situ hybridisation (FISH). RNA from six primary ovarian tumours, five normal ovaries and 47 tumour cell lines (25 ovarian, seven melanoma, three prostate, seven breast and one each of bladder, endometrial, lung, epidermoid and histiocytic lymphoma) was studied. Five of six primary ovarian tumours, three of five normal ovaries and 22 of 25 ovarian cell lines expressed EVI-1 RNA. A variety of other non-haematological cancers also expressed EVI-1 RNA. Immunostaining of ovarian cancer cell lines revealed nuclear EVI-1 protein. In contrast, normal ovary stained primarily within oocytes and faintly in stroma. Primary ovarian tumours showed nuclear and intense, diffuse cytoplasmic staining. Quantitation of EVI-1 RNA, performed using RNAase protection, showed ovarian carcinoma cells expressed 0 to 40 times the EVI-1 RNA in normal ovary, and 0-6 times the levels in leukaemia cell lines. Southern analyses of ovarian carcinoma cell lines showed no amplification or rearrangements involving EVI-1. In some acute leukaemias, activation of EVI-1 transcription is associated with translocations involving 3q26, the site of the EVI-1 gene. Ovarian carcinoma karyotypes showed one line with quadruplication 3(q24q27), but no other clonal structural rearrangements involving 3q26. However, whole chromsome 3 and 3q26 FISH performed on lines with high EVI-1 expression showed translocations involving chromosome 3q26. EVI-1 is overexpressed in ovarian cancer compared with normal ovaries, suggesting a role for EVI-1 in solid tumour carcinogenesis or progression. Mechanisms underlying EVI-1 overexpression remain unclear, but may include rearrangements involving chromosome 3q26

    Cytogenetic alterations in ovarian clear cell carcinoma detected by comparative genomic hybridisation

    Get PDF
    Ovarian clear cell carcinoma (OCCC) accounts for a small but significant proportion of all ovarian cancers and is a distinct clinical and pathological entity. It tends to be associated with poorer response rates to chemotherapy and with a worse prognosis. Little is known about possible underlying genetic changes. DNA extracted from paraffin-embedded samples of 18 pure OCCC cases was analysed for genetic imbalances using comparative genomic hybridisation (CGH). All of the 18 cases showed genomic alterations. The mean number of alterations detected by CGH was 6 (range 1–15) indicating a moderate level of genetic instability. Chromosome deletions were more common than amplifications. The most prominent change involved chromosome 9 deletions in 10 cases (55%). This correlates with changes seen in other epithelial ovarian cancers. This deletion was confirmed using microsatellite markers to assess loss of heterozygosity (LOH) at four separate loci on chromosome 9. The most distinct region of loss detected was around the IFNA marker at 9p21 with 41% (11 out of 27cases) LOH. Other frequent deletions involved 1p (five out of 18; 28%); 11q (four out of 18; 22%) and 16 (five out of 18; 28%). Amplification was most common at chromosome 3 (six out of 18; 33%); 13q (four out of 18; 22%) and 15 (three out of 18; 17%). No high-level amplifications were identified. These features may serve as useful prognostic indicators in the management of OCCC

    Enhanced Transferrin Receptor Expression by Proinflammatory Cytokines in Enterocytes as a Means for Local Delivery of Drugs to Inflamed Gut Mucosa

    Get PDF
    Therapeutic intervention in inflammatory bowel diseases (IBDs) is often associated with adverse effects related to drug distribution into non-diseased tissues, a situation which attracts a rational design of a targeted treatment confined to the inflamed mucosa. Upon activation of immune cells, transferrin receptor (TfR) expression increases at their surface. Because TfR is expressed in all cell types we hypothesized that its cell surface levels are regulated also in enterocytes. We, therefore, compared TfR expression in healthy and inflamed human colonic mucosa, as well as healthy and inflamed colonic mucosa of the DNBS-induced rat model. TfR expression was elevated in the colonic mucosa of IBD patients in both the basolateral and apical membranes of the enterocytes. Increased TfR expression was also observed in colonocytes of the induced colitis rats. To explore the underlying mechanism CaCo-2 cells were treated with various proinflammatory cytokines, which increased both TfR expression and transferrin cellular uptake in a mechanism that did not involve hyper proliferation. These findings were then exploited for the design of targetable carrier towards inflamed regions of the colon. Anti-TfR antibodies were conjugated to nano-liposomes. As expected, iron-starved Caco-2 cells internalized anti-TfR immunoliposomes better than controls. Ex vivo binding studies to inflamed mucosa showed that the anti-TfR immunoliposomes accumulated significantly better in the mucosa of DNBS-induced rats than the accumulation of non-specific immunoliposomes. It is concluded that targeting mucosal inflammation can be accomplished by nano-liposomes decorated with anti-TfR due to inflammation-dependent, apical, elevated expression of the receptor

    Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis

    Get PDF
    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2

    Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response

    Get PDF
    Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1 beta, IL-6, IL-8, IL-10, IFN gamma) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages
    • …
    corecore