195 research outputs found

    Analysis of Signaling Mechanisms Regulating Microglial Process Movement

    Get PDF
    Microglia, the brain’s innate immune cells, are extremely motile cells, continuously surveying the CNS to serve homeostatic functions and to respond to pathological events. In the healthy brain, microglia exhibit a small cell body with long, branched and highly motile processes, which constantly extend and retract, effectively ‘patrolling’ the brain parenchyma. Over the last decade, methodological advances in microscopy and the availability of genetically encoded reporter mice have allowed us to probe microglial physiology in situ. Beyond their classical immunological roles, unexpected functions of microglia have been revealed, both in the developing and the adult brain: microglia regulate the generation of newborn neurons, control the formation and elimination of synapses, and modulate neuronal activity. Many of these newly ascribed functions depend directly on microglial process movement. Thus, elucidating the mechanisms underlying microglial motility is of great importance to understand their role in brain physiology and pathophysiology. Two-photon imaging of fluorescently labelled microglia, either in vivo or ex vivo in acute brain slices, has emerged as an indispensable tool for investigating microglial movements and their functional consequences. This chapter aims to provide a detailed description of the experimental data acquisition and analysis needed to address these questions, with a special focus on key dynamic and morphological metrics such as surveillance, directed motility and ramification

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Measurement of jet fragmentation into charged particles in pp and PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    Jet fragmentation in pp and PbPb collisions at a centre-of-mass energy of 2.76 TeV per nucleon pair was studied using data collected with the CMS detector at the LHC. Fragmentation functions are constructed using charged-particle tracks with transverse momenta pt > 4 GeV for dijet events with a leading jet of pt > 100 GeV. The fragmentation functions in PbPb events are compared to those in pp data as a function of collision centrality, as well as dijet-pt imbalance. Special emphasis is placed on the most central PbPb events including dijets with unbalanced momentum, indicative of energy loss of the hard scattered parent partons. The fragmentation patterns for both the leading and subleading jets in PbPb collisions agree with those seen in pp data at 2.76 TeV. The results provide evidence that, despite the large parton energy loss observed in PbPb collisions, the partition of the remaining momentum within the jet cone into high-pt particles is not strongly modified in comparison to that observed for jets in vacuum.Comment: Submitted to the Journal of High Energy Physic

    Interdomain Interactions Control Ca2+-Dependent Potentiation in the Cation Channel TRPV4

    Get PDF
    Several Ca2+-permeable channels, including the non-selective cation channel TRPV4, are subject to Ca2+-dependent facilitation. Although it has been clearly demonstrated in functional experiments that calmodulin (CaM) binding to intracellular domains of TRP channels is involved in this process, the molecular mechanism remains elusive. In this study, we provide experimental evidence for a comprehensive molecular model that explains Ca2+-dependent facilitation of TRPV4. In the resting state, an intracellular domain from the channel N terminus forms an autoinhibitory complex with a C-terminal domain that includes a high-affinity CaM binding site. CaM binding, secondary to rises in intracellular Ca2+, displaces the N-terminal domain which may then form a homologous interaction with an identical domain from a second subunit. This represents a novel potentiation mechanism that may also be relevant in other Ca2+-permeable channels

    Cutaneous lesions of the nose

    Get PDF
    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Search for supersymmetry in hadronic final states using MT2 in pp collisions at √s = 7 TeV

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License.-- et al.A search for supersymmetry or other new physics resulting in similar final states is presented using a data sample of 4.73 fb−1 of pp collisions collected at √s = 7 TeV with the CMS detector at the LHC. Fully hadronic final states are selected based on the variable M T2, an extension of the transverse mass in events with two invisible particles. Two complementary studies are performed. The first targets the region of parameter space with medium to high squark and gluino masses, in which the signal can be separated from the standard model backgrounds by a tight requirement on M T2. The second is optimized to be sensitive to events with a light gluino and heavy squarks. In this case, the M T2 requirement is relaxed, but a higher jet multiplicity and at least one b-tagged jet are required. No significant excess of events over the standard model expectations is observed. Exclusion limits are derived for the parameter space of the constrained minimal supersymmetric extension of the standard model, as well as on a variety of simplified model spectra.European Commission; Federal Ministry of Science, Research and Economy (Austria); Agency for Innovation by Science and Technology (Belgium); Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (Brasil); Coordenação de Aperfeiçoamento de Pessoal de NĂ­vel Superior (Brasil); Fundação Carlos Chagas Filho de Amparo Ă  Pesquisa do Estado do Rio de Janeiro; Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo; Colciencias (Colombia); Ministry of Science, Education and Sports of the Republic of Croatia; Research Promotion Foundation (Cyprus); Centre National de la Recherche Scientifique (France); Bundesministerium fĂŒr Bildung und Forschung (Deutschland); Deutsche Forschungsgemeinschaft; General Secretariat of Research and Technology (Greece); National Office for Research and Technology (Hungary); Institute for Research in Fundamental Sciences (Iran); Science Foundation Ireland; Istituto Nazionale di Fisica Nucleare (Italia); National Research Foundation of Korea; Centro de InvestigaciĂłn y de Estudios Avanzados del Instituto PolitĂ©cnico Nacional (MĂ©xico); Consejo Nacional de Ciencia y TecnologĂ­a (MĂ©xico); SecretarĂ­a de EducaciĂłn PĂșblica (MĂ©xico); Universidad AutĂłnoma de San Luis PotosĂ­; Pakistan Atomic Energy Commission; Fundação para a CiĂȘncia e a Tecnologia (Portugal); Joint Institute for Nuclear Research (Russia); Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development (Serbia); Ministerio de Ciencia e InnovaciĂłn (España); Centro Nacional de FĂ­sica de PartĂ­culas, AstropartĂ­culas y Nuclear (España); Swiss National Science Foundation; The Scientific and Technological Research Council of Turkey; Turkish Atomic Energy Authority; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Science and Technology Facilities Council (UK); Department of Energy (US); National Science Foundation (US).Peer Reviewe

    Measurement of the top-quark mass in tt¯ events with dilepton final states in pp collisions at √s = 7 TeV

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License.-- Chatrchyan, S. et al.The top-quark mass is measured in proton-proton collisions at s√=7 TeV using a data sample corresponding to an integrated luminosity of 5.0 fb−1 collected by the CMS experiment at the LHC. The measurement is performed in the dilepton decay channel tt¯→(ℓ+Μℓb)(â„“âˆ’ÎœÂŻÂŻâ„“bÂŻ), where ℓ=e,ÎŒ. Candidate top-quark decays are selected by requiring two leptons, at least two jets, and imbalance in transverse momentum. The mass is reconstructed with an analytical matrix weighting technique using distributions derived from simulated samples. Using a maximum-likelihood fit, the top-quark mass is determined to be 172.5±0.4 (stat.)±1.5 (syst.) GeV.Acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation Ă  la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.Peer Reviewe
    • 

    corecore