150 research outputs found

    Evidence of a new state in 11^{11}Be observed in the 11^{11}Li ÎČ\beta-decay

    Get PDF
    Coincidences between charged particles emitted in the ÎČ\beta-decay of 11^{11}Li were observed using highly segmented detectors. The breakup channels involving three particles were studied in full kinematics allowing for the reconstruction of the excitation energy of the 11^{11}Be states participating in the decay. In particular, the contribution of a previously unobserved state at 16.3 MeV in 11^{11}Be has been identified selecting the α\alpha + 7^7He→α\to\alpha + 6^6He+n channel. The angular correlations between the α\alpha particle and the center of mass of the 6^6He+n system favors spin and parity assignment of 3/2−^- for this state as well as for the previously known state at 18 MeV.Comment: 13 pages, 6 figure

    Study of beta-delayed 3-body and 5-body breakup channels observed in the decay of ^11Li

    Get PDF
    The beta-delayed charged particle emission from ^11Li has been studied with emphasis on the three-body n+alpha+^6He and five-body 2alpha+3n channels from the 10.59 and 18.15 MeV states in ^11Be. Monte Carlo simulations using an R-matrix formalism lead to the conclusion that the ^AHe resonance states play a significant role in the break-up of these states. The results exclude an earlier assumption of a phase-space description of the break-up process of the 18.15 MeV state. Evidence for extra sequential decay paths is found for both states.Comment: 16 pages, 9 figures. Submitted to Nuclear Physics

    A patient-derived explant (PDE) model of hormone-dependent cancer

    Get PDF
    Breast and prostate cancer research to date has largely been predicated on the use of cell lines in vitro or in vivo. These limitations have led to the development of more clinically relevant models, such as organoids or murine xenografts that utilize patient-derived material; however, issues related to low take rate, long duration of establishment, and the associated costs constrain use of these models. This study demonstrates that ex vivo culture of freshly resected breast and prostate tumor specimens obtained from surgery, termed patient-derived explants (PDEs), provides a high-throughput and cost-effective model that retains the native tissue architecture, microenvironment, cell viability, and key oncogenic drivers. The PDE model provides a unique approach for direct evaluation of drug responses on an individual patient's tumor, which is amenable to analysis using contemporary genomic technologies. The ability to rapidly evaluate drug efficacy in patient-derived material has high potential to facilitate implementation of personalized medicine approaches.Margaret M. Centenera, Theresa E. Hickey, Shalini Jindal, Natalie K. Ryan, Preethi Ravindranathan, Hisham Mohammed, Jessica L. Robinson, Matthew J. Schiewer, Shihong Ma, Payal Kapur, Peter D. Sutherland, Clive E. Hoffmann, Claus G. Roehrborn, Leonard G. Gomella, Jason S. Carroll, Stephen N. Birrell, Karen E. Knudsen, Ganesh V. Raj, Lisa M. Butler, Wayne D. Tille

    Measurement of CP observables in B± → D(⁎)K± and B± → D(⁎)π± decays

    Get PDF
    Measurements of CP observables in B ± →D (⁎) K ± and B ± →D (⁎) π ± decays are presented, where D (⁎) indicates a neutral D or D ⁎ meson that is an admixture of D (⁎)0 and DÂŻ (⁎)0 states. Decays of the D ⁎ meson to the Dπ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± π ∓ , K + K − and π + π − final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb −1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± →D ⁎ K ± and B ± →D ⁎ π ± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± →DK ± and B ± →Dπ ± decays is an update of previous LHCb measurements. The B ± →DK ± results are the most precise to date
    • 

    corecore