457 research outputs found
Statistics of Atmospheric Correlations
For a large class of quantum systems the statistical properties of their
spectrum show remarkable agreement with random matrix predictions. Recent
advances show that the scope of random matrix theory is much wider. In this
work, we show that the random matrix approach can be beneficially applied to a
completely different classical domain, namely, to the empirical correlation
matrices obtained from the analysis of the basic atmospheric parameters that
characterise the state of atmosphere. We show that the spectrum of atmospheric
correlation matrices satisfy the random matrix prescription. In particular, the
eigenmodes of the atmospheric empirical correlation matrices that have physical
significance are marked by deviations from the eigenvector distribution.Comment: 8 pages, 9 figs, revtex; To appear in Phys. Rev.
Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
Hydrogen evolution on platinum is a key reaction for electrocatalysis and sustainable energy storage, yet its pH-dependent kinetics are not fully understood. Here we present a detailed kinetic study of hydrogen adsorption and evolution on Pt(111) in a wide pH range. Electrochemical measurements show that hydrogen adsorption and hydrogen evolution are both slow in alkaline media, consistent with the observation of a shift in the rate-determining step for hydrogen evolution. Adding nickel to the Pt(111) surface lowers the barrier for hydrogen adsorption in alkaline solutions and thereby enhances the hydrogen evolution rate. We explain these observations with a model that highlights the role of the reorganization of interfacial water to accommodate charge transfer through the electric double layer, the energetics of which are controlled by how strongly water interacts with the interfacial field. The model is supported by laser-induced temperature-jump measurements. Our model sheds light on the origin of the slow kinetics for the hydrogen evolution reaction in alkaline media.This work was supported by a TOP grant from the Netherlands Organization for Scientific Research (NWO). Support from MINECO (Spain) through project CTQ2013-44083-P is acknowledged
Magnetic Moments of Heavy Baryons Using Effective Mass and Screened Charge Scheme
Magnetic moments of heavy charmed baryons with are predicted
employing the concept of effective quark mass and screened charge of quark. We
also extend our scheme to predict the transition magnetic
moments. A comparison of our results with the predictions obtained in recent
models is presented.Comment: 19 pages, Accepted for publication in EPJ-
Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum
High-gain resonant nonlinear Raman scattering on trapped cold atoms within a
high-fineness ring optical cavity is simply explained under a nonlinear
opto-mechanical mechanism, and a proposal using it to detect frequency of
micro-trap on atom chip is presented. The enhancement of scattering spectrum is
due to a coherent Raman conversion between two different cavity modes mediated
by collective vibrations of atoms through nonlinear opto-mechanical couplings.
The physical conditions of this technique are roughly estimated on Rubidium
atoms, and a simple quantum analysis as well as a multi-body semiclassical
simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure
What is epistemic blame?
PostprintPeer reviewe
Investigating the topology of interacting networks - Theory and application to coupled climate subnetworks
Network theory provides various tools for investigating the structural or
functional topology of many complex systems found in nature, technology and
society. Nevertheless, it has recently been realised that a considerable number
of systems of interest should be treated, more appropriately, as interacting
networks or networks of networks. Here we introduce a novel graph-theoretical
framework for studying the interaction structure between subnetworks embedded
within a complex network of networks. This framework allows us to quantify the
structural role of single vertices or whole subnetworks with respect to the
interaction of a pair of subnetworks on local, mesoscopic and global
topological scales.
Climate networks have recently been shown to be a powerful tool for the
analysis of climatological data. Applying the general framework for studying
interacting networks, we introduce coupled climate subnetworks to represent and
investigate the topology of statistical relationships between the fields of
distinct climatological variables. Using coupled climate subnetworks to
investigate the terrestrial atmosphere's three-dimensional geopotential height
field uncovers known as well as interesting novel features of the atmosphere's
vertical stratification and general circulation. Specifically, the new measure
"cross-betweenness" identifies regions which are particularly important for
mediating vertical wind field interactions. The promising results obtained by
following the coupled climate subnetwork approach present a first step towards
an improved understanding of the Earth system and its complex interacting
components from a network perspective
Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo
We previously reported a genome-wide association study (GWAS) identifying 14 susceptibility loci for generalized vitiligo. We report here a second GWAS (450 individuals with vitiligo (cases) and 3,182 controls), an independent replication study (1,440 cases and 1,316 controls) and a meta-analysis (3,187 cases and 6,723 controls) identifying 13 additional vitiligo-associated loci. These include OCA2-HERC2 (combined P = 3.80 × 10 ), MC1R (P = 1.82 × 10 ), a region near TYR (P = 1.57 × 10 ), IFIH1 (P = 4.91 × 10 ), CD80 (P = 3.78 × 10 ), CLNK (P = 1.56 × 10 ), BACH2 (P = 2.53 × 10 ), SLA (P = 1.58 × 10 ), CASP7 (P = 3.56 × 10 ), CD44 (P = 1.78 × 10 ), IKZF4 (P = 2.75 × 10 ), SH2B3 (P = 3.54 × 10 ) and TOB2 (P = 6.81 × 10 ). Most vitiligo susceptibility loci encode immunoregulatory proteins or melanocyte components that likely mediate immune targeting and the relationships among vitiligo, melanoma, and eye, skin and hair coloration
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓
A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at √s=7 TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101 TeV/c2 and MLQ(B0→e±μ∓)>126 TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
- …