1,448 research outputs found

    Electron detachment from negative ions in bichromatic laser field

    Full text link
    Negative ion detachment in two-colour laser field is considered within the recent modification of Keldysh model which makes it quantitatively reliable. The general approach is illustrated by calculation of angular differential detachment rates, partial rates for particular ATD (Above Threshold Detachment) channels and total detachment rates for H^- ion in bichromatic field with 1:2 frequency ratio. Both perturbative and strong field regimes are examined. Polar asymmetry and phase effects are quantitatively characterized with some new features revealed. Phase effects are found to result in a huge anisotropy factor 103\sim 10^3 in the electron angular distribution in the perturbative regime.Comment: 13 pages, 8 figures in separate files which are not incorporated in the latex file of the pape

    Study of the neutron quantum states in the gravity field

    Full text link
    We have studied neutron quantum states in the potential well formed by the earth's gravitational field and a horizontal mirror. The estimated characteristic sizes of the neutron wave functions in the two lowest quantum states correspond to expectations with an experimental accuracy. A position-sensitive neutron detector with an extra-high spatial resolution of ~2 microns was developed and tested for this particular experiment, to be used to measure the spatial density distribution in a standing neutron wave above a mirror for a set of some of the lowest quantum states. The present experiment can be used to set an upper limit for an additional short-range fundamental force. We studied methodological uncertainties as well as the feasibility of improving further the accuracy of this experiment

    Multimedia lecture support system for "Descriptive geometry" and "Engineering graphics" courses

    Full text link
    Разработана инновационная система мультимедийного сопровождения лекций, поддерживающая векторный формат компонентов и работу с интерактивным содержимым и предоставляющая оригинальные функциональные возможности для пользователя. На базе данной системы создан учебно-методический комплекс для дисциплин «Начертательная геометрия» и «Инженерная графика» с богатым наполнением иллюстративными и интерактивными материалами.Innovative system for multimedia lecture support was developed. The system allows proper maintenance of vector components and interactive content and provides user with original functional possibilities. On the base of this system a new educational complex for "Descriptive Geometry" and "Engineering Graphics" courses was developed with enriched with various illustrative and interactive materials

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
    corecore