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Six-wave mixing: secular resonances in a higher-order
mechanism for second-harmonic generation

P Allcock and D L Andrews
School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Received 14 April 1997

Abstract. A six-wave mechanism for second-harmonic generation in isotropic or microscop-
ically disordered media is presented. This mechanism allows the signal to be sustained by
molecules of all symmetry types and may also operate in isotropic fluids. A detailed derivation
and first explicit result is given for the nonlinear optical susceptibility, solving the problem of
secular response.

1. Introduction

High-order (beyond four-wave) optical nonlinearity is an area that has recently attracted
great interest [1–10]. This can partly be attributed to intrinsic novelty, given the advanced
stage of theoretical development and the large number of experimental studies on lower
orders—but there are other reasons too. One is that such processes have emerged as
possible contributors to the production of optical second harmonics and sum frequencies
even in isotropic or otherwise randomly ordered systems such as glasses or solutions [4–
6, 11]. The specific six-wave mechanism for optical second-harmonic generation (SHG) to
be discussed here engenders a coherent harmonic even in systems with inversion symmetry,
such as isotropic fluids or microscopically disordered solids. This is in direct contrast to the
preclusion, through any multipolar three-wave mechanism, of a coherent second harmonic in
any system where the conversion sites are randomly oriented [12–15]. Specifically, through
a six-wave mixing (SWM) process, a finite SHG signal can emerge irrespective of local or
bulk symmetry, in the absence of any static or optically induced fields. This direct SWM
is similar to the perturbational methods employed by Steffenet al [16, 17] in describing
scattering events, differing in that our signal in particular is the first harmonic.

The first observation in 1981 [18] of a (time-delayed) second harmonic in an optical fibre
possessing inversion symmetry attracted little interest until a similar result was reported five
years later [19]. The realization that the onset of the effect exhibited a time delay (the delay
being typically a few hours), and that it could be accelerated by simultaneous application of
the harmonic, was first reported by Stolen and Tom [20]. Other groups have since reported
similar observations [21–23]. It was shortly after discovering this ‘seeding’ effect that the
process was first postulated as a six-photon interaction [24, 25]. It has since been shown
that simultaneous exposure to both the fundamental and the harmonic frequencies creates
a periodic static electric field that removes the symmetry of the bulk [26]. The optical
encoding in the glass thereby engenders an effective non-zero second-order susceptibility.

More recently there have been reports [4, 5] of harmonics emerging in organic dye
solutions through optical poling. There are, however, significant differences to the
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semipermanent optical encoding in glasses. The generation in solution of a second harmonic
must follow poling, within the time scale for rotational relaxation, and for this reason has
to be associated with a fifth-order molecular susceptibility rather than any effective second-
order susceptibility. Direct SWM, however, leads to second-harmonic emission without
any requirement for light-induced anisotropy. It is, moreover, a process that is invariably
permitted irrespective of molecular symmetry. In an earlier analysis [6] it was shown how
such a process plays a significantly more important role for SHG than any mechanism based
on optically induced fields. Furthermore, the degree of harmonic depolarization associated
with SWM accords with that found experimentally [27].

In this paper, we present a fully microscopic theory of the six-wave mechanism for SHG
in isotropic media, solving the problem of secular resonance, and so obtain for the first time
a result for the signal intensity cast in terms of an explicit formula for the corresponding
molecular susceptibility.

2. Theory

Using the microscopic theory of molecular quantum electrodynamics (QED) as our basis
[28, 29], probability amplitudes can be developed using familiar perturbation techniques and
time-ordered diagrams of the form illustrated in figure 1. For each diagram the initial and
final system states are expressible in product form|mol〉|rad〉, as

|I 〉 = |0〉|n(k, λ),0(k′, λ′), 0(k′′, λ′′)〉 (1)

|F 〉 = |0〉|(n− 4)(k, λ),1(k′, λ′), 1(k′′, λ′′)〉. (2)

The radiation field initially consists ofn photons of the laser pump at the fundamental
frequencyω, with wavevectork and polarizationλ; in the final state there are(n−4) pump
photons and two signal photons having wavevectorsk′, k′′ and polarizationsλ′, λ′′, with
energy conservation expressed through 4¯hck − h̄ck′ − h̄ck′′ = 0. Five intermediate states
are transcended and the sixth-order transition operator,MFI , is given by

MFI =
∑

R,S,T ,U,V

〈F |Hint|V 〉〈V |Hint|U〉〈U |Hint|T 〉〈T |Hint|S〉〈S|Hint|R〉〈R|Hint|I 〉
(EIV + i0V )(EIU + i0U)(EIT + i0T )(EIS + i0S)(EIR + i0R)

(3)

whereHint is the dipole interaction Hamiltonian;

Hint = ε−1
0 µ · d⊥. (4)

Hered⊥ is the microscopic transverse displacement electric field andµ the molecular dipole-
moment operator. In the denominators of equation (3) the energy differencesEIX = EI−EX
relate to system intermediate energiesEX (X = R, S, T ,U, V ) as given explicitly in
table 1. A tilde is introduced to denote complex molecular energies directly incorporating the
damping explicitly featured in equation (3), settingẼx0 ≡ Ex0−i0x with the sign determined
by time-reversal considerations [30]. As an example, the matrix element associated with
the first of the time-ordered diagrams in figure 1, using the expansion for the transverse
displacement electric field [29] leads to the following result for harmonic conversion at a
site with position vectorR:

M
(i)
F I =

∑
r,s,t,u,v

(
h̄c

2ε0V

)3

k2
√
k′
√
k′′(ē′′i ej ekē

′
lemen)(µ

0v
i µ

vu
j µ

ut
k µ

ts
l µ

sr
mµ

r0
n )

×√n√n− 1
√
n− 2

√
n− 3 ei(4k−k′−k′′)·R

×[(Ẽr0− h̄ω)(Ẽs0− 2h̄ω)(Ẽt0− 2h̄ω + h̄ω′)
×(Ẽu0− 3h̄ω + h̄ω′)(Ẽv0− 4h̄ω + h̄ω′)]−1 (5)
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Figure 1. Time-ordered diagrams for SWM. The two emergent photon modes can be reversed
for 15 other time-orderings.

with the unit vectorse and e′ representing the incident and signal radiation polarization
vectors respectively. The full probability amplitude is the sum over all possible time
orderings, giving;

MFI =
(
h̄c

2ε0V

)3

k2
√
k′
√
k′′
√
n
√
n− 1

√
n− 2

√
n− 3(ē′′i ej ekē

′
lemen)χ

(5)
ijklmne

i1k·R. (6)

Here1k = 4k−k′ −k′′ is the wavevector mismatch and the molecular susceptibilityχ(5),
fully represented by the 720 (6!) terms permitted on full permutation of the photon indices
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i, j, k, l, m andn, is neatly expressible in the compact form [31]:

χ(5)(−ω′′,−ω′;ω,ω, ω, ω) =
∑
π

∑
r,s,t,u,v

{(µ0v
π(6)µ

vu
π(5)µ

ut
π(4)µ

ts
π(3)µ

sr
π(2)µ

r0
π(1))

×[{Ẽr0+ h̄ηπ(1)ωπ(1)}{Ẽs0+ h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2))}
×{Ẽt0+ h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2) + ηπ(3)ωπ(3))}
×{Ẽu0+ h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2) + ηπ(3)ωπ(3) + ηπ(4)ωπ(4))}
×{Ẽv0+ h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2) + ηπ(3)ωπ(3)
+ηπ(4)ωπ(4) + ηπ(5)ωπ(5))}]−1. (7)

In equation (7) the sign of the photon labelηπ(n) = +1 or −1 for emission or absorption
respectively. The sum overπ leads to the 30 unique permutations (as illustrated upon
reversal of the signal photons in figure 1). For example, the term for whichπ(1) = n,
π(2) = m, π(3) = l, π(4) = k, π(5) = j and π(6) = i has the energy denominator
[(Ẽr0−h̄ω)(Ẽs0−2h̄ω)(Ẽt0−2h̄ω+h̄ω′)(Ẽu0−3h̄ω+h̄ω′)(Ẽv0−4h̄ω+h̄ω′)], corresponding
to the following temporal ordering: absorptionsn andm (ω), emissionl (ω′), absorptions
k andj (ω) and finally emissioni (ω′′).

The structure of theχ(5) tensor has particular interest for the case of exact SHG
(ω′ = ω′′). At first sight, problems appear to arise in connection with the molecular
intermediate state|t〉, since terms corresponding to the molecular ground state|0〉 yield
energy denominators,ET I , carrying radiation-free terms of the formE00 − i00 = −i00.
Since the ground-state lifetime represented by0−1

0 is considered infinite, a divergent
response is suggested. There are 18 individual terms that can result in the form,
Ẽt0 ≡ Et0 − i0t , as can be seen from table 1, withω′ = ω′′ = 2ω. It is these terms
associated with secular resonance that have to be further analysed to identify the correct,
finite response.

To approach the problem it is convenient to take the limiting case of the two-colour
emission:

ω′ = 2ω + δ
ω′′ = 2ω − δ

}
, (8)

where δ is considered a small, positive frequency tending to zero for SHG. It is then
expedient to effect a further separation of the tensor into a sum of two terms, one containing
all 18 problematic secular denominators, for which|t〉 = |0〉, and the other, all remaining
terms,|t〉 6= |0〉;

χ
(5)
ijklmn = {χ(5)ijklmn}|t〉=|0〉 + {χ(5)ijklmn}|t〉6=|0〉. (9)

The combinatorial properties of the 30 summands in the matrix element include 18
permutations of the two groups of three indices(i, jk) and (l, mn). There is no loss of
generality in implementing this subset permutation since the same index symmetry is already
embodied in the polarization product in equation (5). A consequence of the exchange of
indices (i, jk) ↔ (l, mn) in the sum, equation (7), is that the dummy intermediate-state
labels suffer a similar transformationv ↔ s and u ↔ r. Exploiting this feature allows
analysis to proceed more easily in establishing common factors in the expressions to follow.
Explicitly, the subset of 18 terms can be represented in the concise form

{χ(5)(i,jk)(l,mn)}|t〉=|0〉 =
∑
π

∑
r,s,u,v

{
1

{h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2) + ηπ(3)ωπ(3))}
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×(µ0v
π(6)µ

vu
π(5)µ

u0
π(4)µ

0s
π(3)µ

sr
π(2)µ

r0
π(1))

}
×[{Ẽr0+ h̄ηπ(1)ωπ(1)}{Ẽs0+ h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2))}
×{Ẽu0+ h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2) + ηπ(3)ωπ(3) + ηπ(4)ωπ(4))}
×{Ẽv0+ h̄(ηπ(1)ωπ(1) + ηπ(2)ωπ(2) + ηπ(3)ωπ(3) + ηπ(4)ωπ(4) + ηπ(5)ωπ(5))}]−1.

(10)

The first term (i) is given explicitly by

{χ(5)(i,jk)(l,mn)}(i)|t〉=|0〉 =
∑
s,r,v,u

{
1

(h̄ω′ − 2h̄ω)

}

×
[

µ0v
i µ

vu
j µ

u0
k µ

0s
l µ

sr
mµ

r0
n

(Ẽr0− h̄ω)(Ẽs0− 2h̄ω)(Ẽu0− 3h̄ω + h̄ω′)(Ẽv0− 4h̄ω + h̄ω′)

]
(11)

with the same temporal ordering as given earlier. The first index-reversed contribution,
(i, jk)↔ (l, mn), and hence the tenth term (x) in the above sum equation (10), is similarly

{χ(5)(i,jk)(l,mn)}(x)|t〉=|0〉 =
∑
s,r,v,u

{
1

(h̄ω′′ − 2h̄ω)

}

×
[

µ0s
l µ

sr
mµ

r0
n µ

0v
i µ

vu
j µ

u0
k

(Ẽu0− h̄ω)(Ẽv0− 2h̄ω)(Ẽr0− 3h̄ω + h̄ω′′)(Ẽs0− 4h̄ω + h̄ω′′)

]
(12)

where each energy denominator factor is also transposed with respect to its index reversed
counterpart (cf equation (11)). The sum can be expressed concisely, substituting forω′ and
ω′′ through equation (8), as

{χ(5)(i,jk)(l,mn)}(i)+(x)|t〉=|0〉 =
∑
r,s,u,v

1

(+δ)

×
[

µ0v
i µ

vu
j µ

u0
k µ

0s
l µ

sr
mµ

r0
n

(Ẽr0− h̄ω)(Ẽs0− 2h̄ω)(Ẽu0− h̄ω + δ)(Ẽv0− 2h̄ω + δ)

− µ0v
l µ

vu
m µ

u0
n µ

0s
i µ

sr
j µ

r0
k

(Ẽr0− h̄ω)(Ẽs0− 2h̄ω)(Ẽu0− h̄ω − δ)(Ẽv0− 2h̄ω − δ)

]
. (13)

As the intermediate statesv, u, s, r are summed over the same basis set, it is permissible
to effect the interchangel, mn ↔ i, jk, allowing the factorization of the transition dipole
product;

{χ(5)(i,jk)(l,mn)}(i)+(x)|t〉=|0〉 =
∑
r,s,u,v

(µ0v
n µ

vu
m µ

u0
l µ

0s
k µ

sr
j µ

r0
i )

(+δ)
×[{(Ẽr0− h̄ω − δ)(Ẽs0− 2h̄ω − δ)(Ẽu0− h̄ω)(Ẽv0− 2h̄ω)}
−{(Ẽr0− h̄ω)(Ẽs0− 2h̄ω)(Ẽu0− h̄ω + δ)(Ẽv0− 2h̄ω + δ)}]
×[(Ẽr0− h̄ω)(Ẽs0− 2h̄ω)(Ẽu0− h̄ω)(Ẽv0− 2h̄ω)(Ẽr0− h̄ω − δ)
×(Ẽs0− 2h̄ω − δ)(Ẽu0− h̄ω − δ)(Ẽv0− 2h̄ω − δ)]−1. (14)

A common factor ofδ emerges from the numerator, cancelling with the factorizedδ from
the denominator; taking the limitδ → 0 then correctly gives the finite contribution from
the sum of the two terms(i)+ (x).
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s
0
−

2h̄
ω
)

( Ẽ
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(Ẽ
r
0
+
h̄
ω
′ )

(Ẽ
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(Ẽ
t0
−
h̄
ω
+
h̄
ω
′ +

h̄
ω
′′ )

(Ẽ
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This technique can be applied to all 18 terms (nine pairs) of equation (10). The reduced
set of nine summed contributions derived from equation (10) reveals the correct form of the
finite result from the secular contribution to SHG. The complete expression for the finite
secular terms of the molecular susceptibility,{χ(5)(i,jh)(l,mn)}|t〉=|0〉, is given by the sum;

{χ(5)(i,jh)(l,mn)(ξ)}|t〉=|0〉 =
∑
r,s,u,v

9∑
p=1

X(p)

(i,jh)(l,mn), (15)

where the individual terms, X(p)(ij,k)(lm,n), are explicitly

X(1)
(i,jk)(l,mn) = {(µ0v

i µ
vu
j µ

u0
k µ

0s
l µ

sr
mµ

r0
n )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0+ 3Ẽv0Ẽu0h̄ω + 2Ẽv0Ẽs0h̄ω + 3Ẽv0Ẽr0h̄ω + 3Ẽu0Ẽs0h̄ω

+4Ẽu0Ẽr0h̄ω + 3Ẽs0Ẽr0h̄ω − 5Ẽv0(h̄ω)
2− 8Ẽu0(h̄ω)

2

−5Ẽs0(h̄ω)
2− 8Ẽr0(h̄ω)

2+ 12(h̄ω)3]

×[(Ẽr0− h̄ω)2(Ẽs0− 2h̄ω)2(Ẽu0− h̄ω)2(Ẽv0− 2h̄ω)2]−1} (16)

X(2)
(i,jk)(l,mn) = {(µ0v

j µ
vu
i µ

u0
k µ

0s
l µ

sr
mµ

r0
n )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0+ 3Ẽv0Ẽu0h̄ω + 2Ẽv0Ẽs0h̄ω + 3Ẽv0Ẽr0h̄ω + Ẽu0Ẽr0h̄ω

−5Ẽv0(h̄ω)
2+ Ẽu0(h̄ω)

2+ Ẽs0(h̄ω)2+ Ẽr0(h̄ω)2− 3(h̄ω)3]

×[(Ẽr0− h̄ω)2(Ẽs0− 2h̄ω)2(Ẽu0− h̄ω)2(Ẽv0+ h̄ω)2]−1} (17)

X(3)
(i,jk)(l,mn) = {(µ0v

j µ
vu
k µ

u0
i µ

0s
l µ

sr
mµ

r0
n )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0+ 3Ẽv0Ẽu0h̄ω − Ẽv0Ẽs0h̄ω + Ẽu0Ẽr0h̄ω − 3Ẽs0Ẽr0h̄ω

+4Ẽv0(h̄ω)
2+ Ẽu0(h̄ω)

2+ Ẽs0(h̄ω)2+ 4Ẽr0(h̄ω)
2]

×[(Ẽr0− h̄ω)2(Ẽs0− 2h̄ω)2(Ẽu0+ 2h̄ω)2(Ẽv0+ h̄ω)2]−1} (18)

X(4)
(i,jk)(l,mn) = {(µ0v

j µ
vu
k µ

u0
i µ

0s
m µ

sr
l µ

r0
n )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0− Ẽv0Ẽs0h̄ω − 3Ẽv0Ẽr0h̄ω − 2Ẽu0Ẽr0h̄ω

−3Ẽs0Ẽr0h̄ω + Ẽv0(h̄ω)
2+ Ẽu0(h̄ω)

2+ Ẽs0(h̄ω)2− 5Ẽr0(h̄ω)
2+ 3(h̄ω)3]

×[(Ẽr0− h̄ω)2(Ẽs0+ h̄ω)2(Ẽu0+ 2h̄ω)2(Ẽv0+ h̄ω)2]−1} (19)

X(5)
(i,jk)(l,mn) = {(µ0v

j µ
vu
k µ

u0
i µ

0s
m µ

sr
n µ

r0
l )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0− 3Ẽv0Ẽu0h̄ω − 4Ẽv0Ẽs0h̄ω − 3Ẽv0Ẽr0h̄ω − 3Ẽu0Ẽs0h̄ω

−2Ẽu0Ẽr0h̄ω − 3Ẽs0Ẽr0h̄ω − 8Ẽv0(h̄ω)
2− 5Ẽu0(h̄ω)

2

−8Ẽs0(h̄ω)
2− 5Ẽr0(h̄ω)

2− 12(h̄ω)3]

×[(Ẽr0+ 2h̄ω)2(Ẽs0+ h̄ω)2(Ẽu0+ 2h̄ω)2(Ẽv0+ h̄ω)2]−1} (20)

X(6)
(i,jk)(l,mn) = {(µ0v

j µ
vu
i µ

u0
k µ

0s
m µ

sr
n µ

r0
l )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0− 3Ẽv0Ẽu0h̄ω − Ẽv0Ẽs0h̄ω − 3Ẽu0Ẽs0h̄ω − 2Ẽu0Ẽr0h̄ω

+Ẽv0(h̄ω)
2− 5Ẽu0(h̄ω)

2+ Ẽs0(h̄ω)2+ Ẽr0(h̄ω)2+ 3(h̄ω)3]

×[(Ẽr0+ 2h̄ω)2(Ẽs0+ h̄ω)2(Ẽu0− h̄ω)2(Ẽv0+ h̄ω)2]−1} (21)

X(7)
(i,jk)(l,mn) = {(µ0v

i µ
vu
j µ

u0
k µ

0s
m µ

sr
n µ

r0
l )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0− 3Ẽv0Ẽu0h̄ω − Ẽv0Ẽs0h̄ω + Ẽu0Ẽr0h̄ω + 3Ẽs0Ẽr0h̄ω

+Ẽv0(h̄ω)
2+ 4Ẽu0(h̄ω)

2+ 4Ẽs0(h̄ω)
2+ Ẽr0(h̄ω)2]

×[(Ẽr0+ 2h̄ω)2(Ẽs0+ h̄ω)2(Ẽu0− h̄ω)2(Ẽv0− 2h̄ω)2]−1} (22)
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X(8)
(i,jk)(l,mn) = {(µ0v

i µ
vu
j µ

u0
k µ

0s
m µ

sr
l µ

r0
n )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0+ 2Ẽv0Ẽs0h̄ω + 3Ẽu0Ẽs0h̄ω + Ẽu0Ẽr0h̄ω + 3Ẽs0Ẽr0h̄ω

+Ẽv0(h̄ω)
2+ Ẽu0(h̄ω)

2− 5Ẽs0(h̄ω)
2+ Ẽr0(h̄ω)2− 3(h̄ω)3]

×[(Ẽr0− h̄ω)2(Ẽs0+ h̄ω)2(Ẽu0− h̄ω)2(Ẽv0− 2h̄ω)2]−1} (23)

X(9)
(i,jk)(l,mn) = {(µ0v

j µ
vu
i µ

u0
k µ

0s
m µ

sr
l µ

r0
n )[−Ẽv0Ẽu0Ẽs0− Ẽv0Ẽu0Ẽr0− Ẽv0Ẽs0Ẽr0

−Ẽu0Ẽs0Ẽr0+ 2Ẽv0Ẽs0h̄ω − 2Ẽu0Ẽr0h̄ω + Ẽv0(h̄ω)
2

+Ẽu0(h̄ω)
2+ Ẽs0(h̄ω)2+ Ẽr0(h̄ω)2]

×[(Ẽr0− h̄ω)2(Ẽs0+ h̄ω)2(Ẽu0− h̄ω)2(Ẽv0+ h̄ω)2]−1}. (24)

To find the rate0, and thereby the intensity of the second harmonic associated with
SWM, Fermi’s Golden Rule is used [32]. The rate can be cast in terms of the pump
irradianceIω = nh̄cω/V , as:

0 = 2π

h̄

(
h̄c

2ε0V

)6(
V

nh̄c2k

)4

I 4
ω(n)(n− 1)(n− 2)(n− 3)k4k′k′′

×
∣∣∣∣(ē′′i ej ekē′lemen) N∑

ξ

χ
(5)
(i,jk)(l,mn)(ξ)e

i1k·Rξ

∣∣∣∣2ρF (25)

where the sum over molecules labelledξ represents the coherent addition of signals from
each conversion site and whereρF is the density of final radiation states. The result
may immediately be generalized to accommodate an incident laser field more realistic
than a simple Fock state. This leads to the replacement of the number state factors
n(n − 1)(n − 2)(n − 3) and n4 by their expectation values,〈n(n − 1)(n − 2)(n − 3)〉
and〈n〉4 [29], the rate now taking the form

0 = πh̄

32ε6
0c

2V 2
Ī 4
ωg

(4)k′k′′
∣∣∣∣(ē′′i ej ekē′lemen) N∑

ξ

χ
(5)
(i,jk)(l,mn)(ξ)e

i1k·Rξ

∣∣∣∣2ρF , (26)

whereĪω is the mean irradiance of the pump andg(4) its degree of fourth-order coherence,

g(4) = 〈n(n− 1)(n− 2)(n− 3)〉
〈n〉4 . (27)

As the rate equation (26) represents the collective response of theN molecular centres
and the summation over the molecules is inside the modulus squared, the signal contains
N2 contributions, of whichN are diagonal (single-centre) and the other(N2 − N) off-
diagonal. To take account of the tumbling motions experienced by each molecular centre,
as for example in a molecular fluid, or indeed the random orientations of sites in any
other microscopically disordered condensed phase, it is convenient to rewrite equation (26)
explicitly as a sum of the diagonal and off-diagonal terms;

0 = πh̄

32ε6
0c

2V 2
Ī 4
ωg

(4)k′k′′
{ N∑

ξ

|(ē′′i ej ekē′lemen)χ(5)(i,jk)(l,mn)(ξ)|2

+
[
(ē′′i ej ekē

′
lemen)(e

′′
o ēpēqe

′
r ēs ēt )

×
N∑
ξ

N∑
ξ ′ 6=ξ

χ
(5)
(i,jk)(l,mn)(ξ)χ̄

(5)
(o,pq)(r,st)(ξ

′) ei1k·Rξξ ′
]}
ρF (28)



Six-wave mixing 3739

The leading diagonal (incoherent) terms are independent of any directive phase factors.
These terms differ markedly from the off-diagonal (coherent) terms, dependent through the
phase factor exp[i1k ·Rξξ ′ ] on the relative molecular displacementsRξξ ′ ≡ Rξ −Rξ ′ and
for which wavevector matching1k ∼= 0 leads to the well known sinc2 dependence. The two
contributions, incoherent and coherent, can be compared with similar expressions for the
conventional second-harmonic process [33]; a key difference in the results presented here
is that, as will be shown, the off-diagonal (coherent) terms persist in an isotropic medium.

The isotropic averages required by equation (28) for randomly oriented fluids must be
separately implemented on the incoherent and coherent contributions, since they invoke
a twelfth-rank and sixth-rank average tensor response respectively—thus, only even-rank
averages are performed in the case of SWM. For the more familiar three-wave SHG process,
the sixth-rank average yields a non-zero result for the incoherent signal whereas the third-
rank average vanishes, as has been shown elsewhere [13]. The isotropic average for the
coherent SWM term is represented by

(ηN −N)|〈(ē′′i ej ekē′lemen)(χ(5)(i,jk)(l,mn))〉|2

= (ηN −N)|(ē′′i ej ekē′lemen)(χ(5)(λ,µν)(o,πρ))〈liλljµlkν llolmπ lnρ〉|2 (29)

where theliλ represent the direction cosines linking the site- and radiation-centred frames
of reference,ηN is defined as the coherence factor,

ηN =
∣∣∣∣ N∑

ξ

exp(i1k ·Rξ )

∣∣∣∣2, (30)

and all other terms are as previously defined. From the isotropic averages the sixth-rank
average required in equation (29) consists of products of Kronecker deltas only [34], and the
coherent harmonic therefore survives. This is irrespective of the molecular (conversion site)
symmetry asχ(5) itself, again unlikeχ(2) for conventional SHG, is supported by all point
groups. Thus the ensemble rate of coherent second-harmonic production through SWM can
be expressed by

〈0〉 = πh̄

32ε6
0c

2V 2
I 4
ωg

(4)k′k′′{(ηN −N)|(ē′′i ej ekē′lemen)(χ(5)(λ,µν)(o,πρ))〈liλljµlkν llolmπ lnρ〉|2}ρF .
(31)

Compared to this, signal contributions associated with the incoherent process will be
insignificant and can, unless there is gross violation of the wavevector matching, safely
be ignored.

In regions of strong dispersion where wavevector matching can only be achieved in a
non-collinear beam geometry, it may prove experimentally expedient to stimulate emission
by a secondary inputIω′ . The signal output at frequency(4ω − ω′) will then emerge in a
direction determined by the wavevector matching condition, yet without requiring the levels
of input intensity that could produce optical poling. This experimental set-up also ensures
that the collected signal is derived from the specific SWM process under consideration—
the envisaged signal geometry is illustrated in figure 2. The signal intensity is now also

Figure 2. The arrows indicate the wavevectors for pump,k, probe,k′, and signal,k′′, for
SWM.
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proportional to the intensity of the input harmonic throughIω′ = nh̄c2k′/V , given that
the occupation number of the probe beam is sufficiently large for the approximation,
(n + 1)(k′, λ′) ≈ n(k′, λ′) to be valid. Utilizing the expression for the density of final
radiation statesρF = k′2 d�V/(2π)3h̄c [28], the rate equation (31) can be re-expressed as a
signal radiant intensityIω′′(Wsr−1), whereI = h̄ck′′ d0/d�, d� is an element of the solid
angle around the signal wavevectork′′; assuming the magnitude of the wavevectors,k′ and
k′′, are both approximately 2ω/c, we obtain:

Iω′′ = ω4

16π2ε6
0c

8
Īω′ Ī

4
ωg

(4){(ηN −N)|(χ(5)(λ,µν)(o,πρ))(ē′′i ej ekē′lenem)〈liλljµlkν llolmπ lnρ〉|2}. (32)

By explicit implementation of the rotational average, exploiting the index symmetry of the
incident-pump photon polarization vectors, we then have;

I = ω4

560π4ε6
0c

8
Īω′ Ī

4
ωg

(4)(ηN −N)|[{6(e · ē′)(e · ē′′)− 2(ē′ · ē′′)}χ(5)(λµµν)λν
−{2(e · ē′)(e · ē′′)− 3(ē′ · ē′′)}χ(5)(µµνν)λλ]|2 (33)

As shown previously [6], SWM in frequency regions where Kleinman index symmetry
holds for the nonlinear susceptibility tensor, which in practice suggests working with low
frequencies, leads to the conclusion that the emergent harmonic, collinear with the pump
beam, retains as much as 96% of the pump polarization, as follows from equation (33).
Nonetheless equation (33) is a more general result, applicable over all frequency regions
and also catering for off-axis emission. As such it may be exploited for the evaluation of the
tensor parameters. For example, when the probe and signal beams are at anglesθ = 30◦

and ϕ = −30◦ relative to the pump beam respectively, the second tensorial parameter
of equation (33) does not contribute to the signal intensity. Therefore the magnitude of
χ
(5)
(λµµν)λν is directly obtainable from this particular experimental geometry.

3. Conclusion

Analysis of the SWM mechanism for SHG reveals that a finite harmonic can be sustained
irrespective of molecular or bulk symmetry. It has been shown in detail how to identify
the correct form of the fifth-order molecular susceptibility, resolving the apparent infinities
associated with secular resonance. Experimental observation of the signal is expected to
be contingent on satisfying the wavevector matching conditions of the overall process. In
this case the signal would propagate collinearly with the pump. However, for experimental
purposes the introduction of a probe beam into the fluid sample allows the signal to be
detected away from the pump propagation direction by forcing one of the signal photons
into a radiation mode with a well defined wavevector. The signal then emerges in an equally
well defined, unoccupied radiation mode.

The issues raised by taking the limitω′′ → ω′ are evidently complex and merit further
discussion. The emergence of degeneracy as two states become energetically equivalent
is familiar enough in quantum mechanics. Here, however, it is not the states of the
radiation field but the modes to which they belong that merge into a non-degenerate unity,
|k′′, λ′′〉 → |k′, λ′〉. This is closely akin to the common treatment in the theory of SHG as a
limiting case of SFG, though that is a case where the detailed issues have seldom received
the attention they deserve because classical rather than quantum-field theoretic treatments are
the norm. The physical distinguishability of photons with marginally different propagation
vectors—for convenience assuming that the photon polarizations are nearly identical, is
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linked with the coherence volume, as recently discussed by Mandel and Wolf [35]. For
SWM, as with SHG, the coherence volume for the output radiation will be of the same order
of magnitude as the input—though marginally smaller, reflecting a line width broadened in
the frequency domain. For typical input line widths both coherence volumes are nonetheless
considerably larger than the physical volume in which frequency conversion takes place,
and the SWM output can therefore be treated as a single mode of radiation.

Over most optical frequency ranges, the SWM process, with its intrinsic ability to sustain
a second harmonic in all symmetry species, offers more opportunities than conventional SHG
for the exploitation of (non-secular) resonances. Inspection of the time-ordered diagrams of
figure 1 (x), (xi) and (xiii), for example, readily shows their potential for enhancement
associated with three- and four-photon resonances. The greater density of molecular
(vibronic) states at higher energies will generally afford a greater likelihood of exploiting
such resonances, typically offering several orders of magnitude signal enhancement. Finally,
it may be noted that the six-wave process, once experimentally characterized, affords an
excellent test for the computation of nonlinear optical susceptibilities using state-of-the-art
software. The refinement of such computational methods, now achievable through solving
the problem of secular behaviour, is of key significance for the further development of
nonlinear optical devices.
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