9 research outputs found

    Kinetics of Eotaxin Generation and Its Relationship to Eosinophil Accumulation in Allergic Airways Disease: Analysis in a Guinea Pig Model In Vivo

    Get PDF
    Challenge of the airways of sensitized guinea pigs with aerosolized ovalbumin resulted in an early phase of microvascular protein leakage and a delayed phase of eosinophil accumulation in the airway lumen, as measured using bronchoalveolar lavage (BAL). Immunoreactive eotaxin levels rose in airway tissue and BAL fluid to a peak at 6 h falling to low levels by 12 h. Eosinophil numbers in the tissue correlated with eotaxin levels until 6 h but eosinophils persisted until the last measurement time point at 24 h. In contrast, few eosinophils appeared in BAL over the first 12 h, major trafficking through the airway epithelium occurring at 12–24 h when eotaxin levels were low. Constitutive eotaxin was present in BAL fluid. Both constitutive and allergen-induced eosinophil chemoattractant activity in BAL fluid was neutralized by an antibody to eotaxin. Allergen-induced eotaxin appeared to be mainly in airway epithelium and macrophages, as detected by immunostaining. Allergen challenge of the lung resulted in a rapid release of bone marrow eosinophils into the blood. An antibody to IL-5 suppressed bone marrow eosinophil release and lung eosinophilia, without affecting lung eotaxin levels. Thus, IL-5 and eotaxin appear to cooperate in mediating a rapid transfer of eosinophils from the bone marrow to the lung in response to allergen challenge

    Calcitonin-derived carrier peptide plays a major role in the membrane localization of a peptide–cargo complex

    Get PDF
    AbstractBilayers made of dioleoylphosphatidylcholine (DOPC)/dipalmitoylphosphatidylcholine (DPPC) mixture containing or not cholesterol (Chl) were used to investigate the interaction of a carrier peptide with membranes. Atomic force microscopy revealed that the C-terminal 9-32 fragment of human calcitonin (hCT (9-32)), free or coupled to enhanced green fluorescent protein (hCT-eGFP) cargo forms aggregates in the DOPC fluid phase in absence of Chl and in the DPPC enriched liquid-ordered phase when Chl is present. The data show that hCT (9-32) plays a determinant role in the membrane localization of the peptide–cargo complex. They suggest that carpet-like mechanism for membrane destabilization may be involved in the carrier function of hCT (9-32)

    Coexistence of a Two-States Organization for a Cell-Penetrating Peptide in Lipid Bilayer

    No full text
    Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P((α)), a primary amphipathic cell-penetrating peptide which remains α-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P((α)) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P((α)) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P((α)). The simultaneous two-states organization of P((α)), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide

    Le site de référence du Partenariat européen d’innovation pour un vieillissement actif et en bonne santé MACVIA-LR (contre les maladies chroniques pour un vieillissement en bonne santé en Languedoc-Roussillon)

    No full text
    International audienceLe site de référence du Partenariat européen d'innovation pour un vieillissement actif et en bonne santé MACVIA-LR (contre les maladies chroniques pour un vieillissement en bonne santé en Languedoc-Roussillon

    Le site de référence du Partenariat européen d’innovation pour un vieillissement actif et en bonne santé MACVIA-LR (contre les maladies chroniques pour un vieillissement en bonne santé en Languedoc-Roussillon)

    No full text
    corecore