103 research outputs found

    Environmental Risk Factors for Pneumocystis Pneumonia Hospitalizations in HIV Patients

    Get PDF
    Background. Pneumocystis pneumonia (PcP) is the second leading cause of morbidity and mortality in human immunodeficiency virus (HIV)–infected patients in the United States. Although the host risk factors for the development of PcP are well established, the environmental (climatological, air pollution) risk factors are poorly understood. The major goal of this study was to determine the environmental risk factors for admissions of HIV-positive patients with PcP to a single medical center. / Methods. Between 1997 and 2008, 457 HIV-positive patients with microscopically confirmed PcP were admitted to the San Francisco General Hospital. A case-crossover design was applied to identify environmental risk factors for PcP hospitalizations. Climatological and air pollution data were collected from the Environmental Protection Agency and Weather Warehouse databases. Conditional logistic regression was used to evaluate the association of each environmental factor and PcP hospital admission. / Results. Hospital admissions were significantly more common in the summer than in the other seasons. Increases in temperature and sulfur dioxide levels were independently associated with hospital admissions for PcP, but the effects of sulfur dioxide were modified by increasing carbon monoxide levels. / Conclusions. This study identifies both climatological and air pollution constituents as independent risk factors for hospitalization of HIV-positive patients with PcP in San Francisco. Thus, the environmental effects on PcP are more likely complex than previously thought. Further studies are needed to understand how these factors exert their effects and to determine if these factors are associated with PcP in other geographic locations

    Health behaviors and risk factors in those who use complementary and alternative medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surveys have generally found that individuals more likely to use complementary and alternative medicine are female, live in the western United States, are likely to have a health complaint, and have a higher socioeconomic status than do nonusers. What is not known is the extent to which those who use complementary and alternative medicine also engage in positive health behaviors, such as smoking cessation or increased physical activity and/or exhibit fewer health risk factors such as obesity. This has been identified as a key research question in a recent Institute of Medicine report. In the present study we sought to determine whether the use of complementary and alternative medicine is associated with health behaviors or risk factors known to impact on health status.</p> <p>Methods</p> <p>The current study is a cross-sectional regression analysis using data from the 2002 National Health Interview Survey. Data were collected in-person from 31,044 adults throughout the 50 states and the District of Columbia.</p> <p>Results</p> <p>After controlling for a range of other factors, we found that engaging in leisure-time physical activity, having consumed alcohol in one's life but not being a current heavy drinker, and being a former smoker are independently associated with the use of CAM. Obese individuals are slightly less likely to use CAM than individuals with a healthy body-mass index. No significant associations were observed between receipt of an influenza vaccine and CAM use.</p> <p>Conclusion</p> <p>Those engaging in positive health behaviors and exhibiting fewer health risk factors are more likely to use CAM than those who forgo positive health behaviors or exhibit more health risk factors. The fact that users of CAM tend to pursue generally healthy lifestyles suggests that they may be open to additional recommendations toward optimizing their health.</p

    Peroxisomal ABC transporters: functions and mechanism

    Get PDF
    Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism, and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The ÎČ-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for ÎČ-oxidation enter peroxisomes via ATP Binding Cassette (ABC) transporters of the ABCD subfamily and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerise and have distinct but partially overlapping substrate specificity; S. cerevisiae has two half transporters that heterodimerise and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of ÎČ-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 (COMATOSE/PXA1/PED3) accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes

    Top predators in relation to bathymetry, ice and krill during austral winter in Marguerite Bay, Antarctica

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 485-499, doi:10.1016/j.dsr2.2007.11.006.A key hypothesis guiding the U.S. Southern Ocean Global Ocean Ecosystems Dynamics (U.S. SO GLOBEC) program is that deep across-shelf troughs facilitate the transport of warm and nutrient-rich waters onto the continental shelf of the Western Antarctic Peninsula, resulting in enhanced winter production and prey availability to top predators. We tested aspects of this hypothesis during austral winter by assessing the distribution of the resident pack-ice top predators in relation to these deep across-shelf troughs and by investigating associations between top predators and their prey. Surveys were conducted July-August 2001 and August-September 2002 in Marguerite Bay, Antarctica, with a focus on the main across-shelf trough in the bay, Marguerite Trough. The common pack-ice seabird species were snow petrel (Pagodroma nivea, 1.2 individuals km-2), Antarctic petrel (Thalassoica antarctica, 0.3 individuals km-2), and Adélie penguin (Pygoscelis adeliae, 0.5 individuals km-2). The most common pack-ice pinniped was crabeater seal (Lobodon carcinophagus). During both winters, snow and Antarctic petrels were associated with low sea ice concentrations independent of Marguerite Trough, while Adélie penguins occurred in association with this trough. Krill concentrations, both shallow and deep, were also associated with Adélie penguin and snow petrel distributions. During both winters, crabeater seal occurrence was associated with deep krill concentrations and with regions of lower chlorophyll concentration. The area of lower chlorophyll concentrations occurred in an area with complex bathymetry close to land and heavy ice concentrations. Complex or unusual bathymetry via its influence on physical and biological processes appears to be one of the keys to understanding how top predators survive during the winter in this Antarctic region.This material is based upon work supported by the National Science Foundation under Grants No. OPP-9910096 (to C. Ribic), OPP-9910307 (to P. Wiebe), OPP-9632763, OPP-0120525, OPP-0217282 and OPP-0224727 (to W. Fraser), and a Fulbright Scholarship and Office of Naval Research Grant N00014-03-0212 (to G. Lawson)

    Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific

    Get PDF
    Background: In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. Methodology/Principal Findings: A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. Conclusions/Significance: For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems
    • 

    corecore