214 research outputs found

    The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)

    Get PDF
    The high-latitude oceans are key areas of carbon and heat exchange between the atmosphere and the ocean. As such, they are a focus of both modern oceanographic and palaeoclimate research. However, most palaeoclimate proxies that could provide a long-term perspective are based on calcareous organisms, such as foraminifera, that are scarce or entirely absent in deep-sea sediments south of 50∘ S in the Southern Ocean and north of 40∘ N in the North Pacific. As a result, proxies need to be developed for the opal-based organisms (e.g. diatoms) found at these high latitudes, which dominate the biogenic sediments recovered from these regions. Here we present a method for the analysis of the boron (B) content and isotopic composition (ή11B) of diatom opal. We apply it for the first time to evaluate the relationship between seawater pH, ή11B and B concentration ([B]) in the frustules of the diatom Thalassiosira weissflogii, cultured across a range of carbon dioxide partial pressure (pCO2) and pH values. In agreement with existing data, we find that the [B] of the cultured diatom frustules increases with increasing pH (Mejía et al., 2013). ή11B shows a relatively well defined negative trend with increasing pH, completely distinct from any other biomineral previously measured. This relationship not only has implications for the magnitude of the isotopic fractionation that occurs during boron incorporation into opal, but also allows us to explore the potential of the boron-based proxies for palaeo-pH and palaeo-CO2 reconstruction in high-latitude marine sediments that have, up until now, eluded study due to the lack of suitable carbonate material

    Silicic Acid Cycling in the Bering Sea During the Mid‐Pleistocene Transition

    Get PDF
    The rate of deep-ocean carbon burial is considered important for modulating glacial-interglacial atmospheric CO2 concentrations and global climate during the Quaternary. It has been suggested that glacial iron fertilization and increased efficiency of the biological pump in the Southern Ocean since the Mid-Pleistocene Transition (MPT) was key in lowering atmospheric pCO2 and facilitating rapid land ice accumulation. There is growing evidence that a similar mechanism may have existed in the subarctic Pacific Ocean, although this has not yet been assessed. Here, the silicon isotope composition of diatoms (ή30Sidiatom) from the Bering Sea upwelling region is used to assess the role of nutrient cycling on the subarctic Pacific biological pump during the MPT. Results show that during and after the “900 kyr event,” the high productivity green belt zone was characterized by low silicic acid utilization but high supply, coincident with the dominance of diatom resting spores. We posit that as nutrient upwelling was suppressed following pack ice growth and expansion of glacial North Pacific Intermediate Water (GNPIW), primary productivity became nitrate-limited and enhanced opal remineralization caused a relative increase in silicic acid supply. However, preferential preservation and higher cellular carbon content of diatom resting spores, as well as increased supply of iron from expanded sea ice, likely sustained the net efficiency of the Bering Sea biological pump through the MPT. Remnant iron and silicic acid may also have propagated into the lower subarctic Pacific Ocean through GNPIW, aiding a regionally efficient biological pump at 900 kyr and during post-MPT glacials

    Biogeochemical cycling in the Bering Sea over the onset of major Northern Hemisphere glaciation

    Get PDF
    The Bering Sea is one of the most biologically productive regions in the marine system and plays a key role in regulating the flow of waters to the Arctic Ocean and into the subarctic North Pacific Ocean. Cores from IODP Expedition 323 to the Bering Sea provide the first opportunity to obtain reconstructions from the region that extend back to the Pliocene. Previous research at Bowers Ridge, south Bering Sea, has revealed stable levels of siliceous productivity over the onset of major Northern Hemisphere Glaciation (NHG) (c. 2.85-2.73 Ma). However, diatom silica isotope records of oxygen (ÎŽ18Odiatom) and silicon (ÎŽ30Sidiatom) presented here demonstrate that this interval was associated with a progressive increase in the supply of silicic acid to the region, superimposed on shift to a more dynamic environment characterized by colder temperatures and increased sea ice. This concluded at 2.58 Ma with a sharp increase in diatom productivity, further increases in photic zone nutrient availability and a permanent shift to colder sea surface conditions. These transitions are suggested to reflect a gradually more intense nutrient leakage from the subarctic northwest Pacific Ocean, with increases in productivity further aided by increased sea-ice and wind-driven mixing in the Bering Sea. In suggesting a linkage in biogeochemical cycling between the south Bering Sea and subarctic Northwest Pacific Ocean, mainly via the Kamchatka Strait, this work highlights the need to consider the inter-connectivity of these two systems when future reconstructions are carried out in the region

    South Georgia marine productivity over the past 15 ka and implications for glacial evolution

    Get PDF
    The subantarctic islands of South Georgia are located in the Southern Ocean, and they may be sensitive to future climate warming. However, due to a lack of well-dated subantarctic palaeoclimate archives, there is still uncertainty about South Georgia’s response to past climate change. Here, we reconstruct primary productivity changes and infer Holocene glacial evolution by analysing two marine gravity cores: one near Cumberland Bay on the inner South Georgia shelf (GC673: ca. 9.5 to 0.3cal.kyrBP) and one offshore of Royal Bay on the mid-shelf (GC666: ca. 15.2cal.kyrBP to present). We identify three distinct benthic foraminiferal assemblages characterised by the dominance of Miliammina earlandi, Fursenkoina fusiformis, and Cassidulinoides parkerianus that are considered alongside foraminiferal stable isotopes and the organic carbon and biogenic silica accumulation rates of the host sediment. The M. earlandi assemblage is prevalent during intervals of dissolution in GC666 and reduced productivity in GC673. The F. fusiformis assemblage coincides with enhanced productivity in both cores. Our multiproxy analysis provides evidence that the latest Pleistocene to earliest Holocene (ca. 15.2 to 10.5cal.kyrBP) was a period of high productivity associated with increased glacial meltwater discharge. The mid–late Holocene (ca. 8 to 1cal.kyrBP), coinciding with a fall in sedimentation rates and lower productivity, was likely a period of reduced glacial extent but with several short-lived episodes of increased productivity from minor glacial readvances. The latest Holocene (from ca. 1cal.kyrBP) saw an increase in productivity and glacial advance associated with cooling temperatures and increased precipitation which may have been influenced by changes in the southwesterly winds over South Georgia. We interpret the elevated relative abundance of F. fusiformis as a proxy for increased primary productivity which, at proximal site GC673, was forced by terrestrial runoff associated with the spring–summer melting of glaciers in Cumberland Bay. Our study refines the glacial history of South Georgia and provides a more complete record of mid–late Holocene glacial readvances with robust chronology. Our results suggest that South Georgia glaciers were sensitive to modest climate changes within the Holocene

    Long-term trends in diatom diversity and palaeoproductivity: a 16000-year multidecadal record from Lake Baikal, southern Siberia

    Get PDF
    Biological diversity is inextricably linked to community stability and ecosystem functioning, but our understanding of these relationships in freshwater ecosystems is largely based on short-term observational, experimental, and modelling approaches. Using a multidecadal diatom record for the past ca. 16 000 years from Lake Baikal, we investigate how diversity and palaeoproductivity have responded to climate change during periods of both rapid climate fluctuation and relative climate stability. We show dynamic changes in diatom communities during the past 16 000 years, with decadal shifts in species dominance punctuating millennial-scale seasonal trends. We describe for the first time in Lake Baikal a gradual shift from spring to autumnal diatom communities that started during the Younger Dryas and peaked during the Late Holocene, which likely represents orbitally driven ecosystem responses to long-term changes in seasonality. Using a multivariate classification tree, we show that trends in planktonic and tychoplanktonic diatoms broadly reflect both long-term climatic changes associated with the demise of Northern Hemisphere ice sheets and abrupt climatic changes associated with, for example, the Younger Dryas stadial. Indeed, diatom communities are most different before and after the boundary between the Early and Middle Holocene periods of ca. 8.2 cal kyr BP, associated with the presence and demise of Northern Hemisphere ice sheets respectively. Diatom richness and diversity, estimated using Hill's species numbers, are also shown to be very responsive to periods characterized by abrupt climate change, and using knowledge of diatom autecologies in Lake Baikal, diversity trends are interpreted in terms of resource availability. Using diatom biovolume accumulation rates (BVARs; ”m3 cm−2 yr−1), we show that spring diatom crops dominate palaeoproductivity for nearly all of our record, apart from a short period during the Late Holocene, when autumnal productivity dominated between 1.8–1.4 cal kyr BP. Palaeoproductivity was especially unstable during the Younger Dryas, reaching peak rates of 18.3 × 103 ”m3 cm−2 yr−1 at ca. 12.3 cal kyr BP. Generalized additive models (GAMs), which explore productivity–diversity relationships (PDRs) during pre-defined climate periods, reveal complex relationships. The strongest statistical evidence for GAMs were found during the Younger Dryas, the Early Holocene, and the Late Holocene, i.e. periods of rapid climate change. We account for these differences in terms of climate-mediated resource availability, and the ability of endemic diatom species in Lake Baikal to adapt to extreme forms of living in this unique ecosystem. Our analyses offer insight into how productivity–diversity relationships may develop in the future under a warming climate

    Mercury loading within the Selenga River basin and Lake Baikal, Siberia

    Get PDF
    Mercury (Hg) loading in Lake Baikal, a UNESCO world heritage site, is growing and poses a serious health concern to the lake’s ecosystem due to the ability of Hg to transform into a toxic form, known as methylmercury (MeHg). Monitoring of Hg into Lake Baikal is spatially and temporally sparse, highlighting the need for insights into historic Hg loading. This study reports measurements of Hg concentrations from water collected in August 2013 and 2014 from across Lake Baikal and its main inflow, the Selenga River basin (Russia, Mongolia). We also report historic Hg contamination using sediment cores taken from the south and north basins of Lake Baikal, and a shallow lake in the Selenga Delta. Field measurements from August 2013 and 2014 show high Hg concentrations in the Selenga Delta and river waters, in comparison to pelagic lake waters. Sediment cores from Lake Baikal show that Hg enrichment commenced first in the south basin in the late-19th century, and then in the north basin in the mid-20th century. Hg flux was also 20-fold greater in the south basin compared to the north basin sediments. Hg enrichment was greatest in the Selenga Delta shallow lake (Enrichment Ratio (ER) = 2.3 in 1994 CE), with enrichment occurring in the mid- to late-20th century. Local sources of Hg are predominantly from gold mining along the Selenga River, which have been expanding over the last few decades. More recently, another source is atmospheric deposition from industrial activity in Asia, due to rapid economic growth across the region since the 1980s. As Hg can bioaccumulate and biomagnify through trophic levels to Baikal’s top consumer, the world’s only truly freshwater seal (Pusa sibirica), it is vital that Hg input at Lake Baikal and within its catchment is monitored and controlled

    PaCTS 1.0: a crowdsourced reporting standard for paleoclimate data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate datasets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new vs. legacy datasets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate datasets. Since such goals are at odds with present practices, we discuss a transparent path towards implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes

    Get PDF
    Illumina sequencing allows rapid, cheap and accurate whole genome bacterial analyses, but short reads (<300 bp) do not usually enable complete genome assembly. Long-read sequencing greatly assists with resolving complex bacterial genomes, particularly when combined with short-read Illumina data (hybrid assembly). However, it is not clear how different long-read sequencing methods affect hybrid assembly accuracy. Relative automation of the assembly process is also crucial to facilitating high-throughput complete bacterial genome reconstruction, avoiding multiple bespoke filtering and data manipulation steps. In this study, we compared hybrid assemblies for 20 bacterial isolates, including two reference strains, using Illumina sequencing and long reads from either Oxford Nanopore Technologies (ONT) or SMRT Pacific Biosciences (PacBio) sequencing platforms. We chose isolates from the family Enterobacteriaceae, as these frequently have highly plastic, repetitive genetic structures, and complete genome reconstruction for these species is relevant for a precise understanding of the epidemiology of antimicrobial resistance. We de novo assembled genomes using the hybrid assembler Unicycler and compared different read processing strategies, as well as comparing to long-read-only assembly with Flye followed by short-read polishing with Pilon. Hybrid assembly with either PacBio or ONT reads facilitated high-quality genome reconstruction, and was superior to the long-read assembly and polishing approach evaluated with respect to accuracy and completeness. Combining ONT and Illumina reads fully resolved most genomes without additional manual steps, and at a lower consumables cost per isolate in our setting. Automated hybrid assembly is a powerful tool for complete and accurate bacterial genome assembly

    Global economic burden of unmet surgical need for appendicitis

    Get PDF
    Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
    • 

    corecore