239 research outputs found

    Crystal architectures of a layered silicate on monodisperse spherical silica particles cause the topochemical expansion of the core-shell particles

    Get PDF
    Anisotropic structural changes in an expandable layered silicate (directed towards the c-axis) occurring on isotropic and monodisperse microspheres were detected by measurable increases in the grain size. The hierarchical changes were observed through pursing the sophisticated growth of expandable layered silicate crystals on monodisperse spherical silica particles with diameters of 1.0 mu m; the core-shell hybrids with a quite uniform grain size were successfully produced using a rotating Teflon-lined autoclave by reacting spherical silica particles in a colloidal suspension with lithium and magnesium ions under alkaline conditions at 373 K. The size distribution of the core-shell particles tended to be uniform when the amount of lithium ions in the initial mixture decreased. The intercalation of dioctadecyldimethylammonium ions into the small crystals through cation-exchange reactions expanded the interlayer space, topochemically increasing the grain size without any change occurring in the shapes of the core-shell particles. (C) 2015 Elsevier Inc. All rights reserved.ArticleMICROPOROUS AND MESOPOROUS MATERIALS. 215:168-174 (2015)journal articl

    AMPK is indispensable for overload-induced muscle glucose uptake and glycogenesis but dispensable for inducing hypertrophy in mice

    Get PDF
    Chronic muscle loading (overload) induces skeletal muscles to undergo hypertrophy and to increase glucose uptake. Although AMP-activated protein kinase (AMPK) reportedly serves as a negative regulator of hypertrophy and a positive regulator of glucose uptake, its role in overload-induced skeletal muscle hypertrophy and glucose uptake is unclear. This study aimed to determine whether AMPK regulates overload-induced hypertrophy and glucose uptake in skeletal muscles. To this end, skeletal muscle overload was induced through unilateral synergist ablations in wild-type (WT) and transgenic mice, expressing the dominant-negative mutation of AMPK (AMPK-DN). After 14 days, parameters, including muscle fiber cross-sectional area (CSA), glycogen level, and in vivo [3 H]-2-deoxy-D-glucose uptake, were assessed. No significant difference was observed in body weight or blood glucose level between the WT and AMPK-DN mice. However, the 14-day muscle overload activated the AMPK pathway in WT mice skeletal muscle, whereas this response was impaired in the AMPK-DN mice. Despite a normal CSA gain in each fiber type, the AMPK-DN mice demonstrated a significant impairment of overload-induced muscle glucose uptake and glycogenesis, compared to WT mice. Moreover, 14-day overload-induced changes in GLUT4 and HKII expression levels were reduced in AMPK-DN mice, compared to WT mice. This study demonstrated that AMPK activation is indispensable for overload-induced muscle glucose uptake and glycogenesis; however, it is dispensable for the induction of hypertrophy in AMPK-DN mice. Furthermore, the AMPK/GLUT4 and HKII axes may regulate overload-induced muscle glucose uptake and glycogenesis

    Sensorimotor Modulation Differs with Load Type during Constant Finger Force or Position

    Get PDF
    During submaximal isometric contraction, there are two different load types: production of a constant force against a rigid restraint (force task), and maintenance of position against a constant load (position task). Previous studies reported that the time to task failure during a fatigue task was twice as long in the force task compared with the position task. Sensory feedback processing may contribute to these differences. The purpose of the current study was to determine the influence of load types during static muscle contraction tasks on the gating effect, i.e., attenuation of somatosensory-evoked potentials (SEPs) and the cortical silent period (cSP). Ten healthy subjects contracted their right first dorsal interosseus muscle by abducting their index finger for 90 s, to produce a constant force against a rigid restraint that was 20% of the maximum voluntary contraction (force task), or to maintain a constant position with 10° abduction of the metacarpophalangeal joint against the same load (position task). Somatosensory evoked potentials (SEPs) were recorded from C3′ by stimulating either the right ulnar or median nerve at the wrist while maintaining contraction. The cortical silent period (cSP) was also elicited by transcranial magnetic stimulation. Reduction of the amplitude of the P45 component of SEPs was significantly larger during the position task than during the force task and under control rest conditions when the ulnar nerve, but not the median nerve, was stimulated. The position task had a significantly shorter cSP duration than the force task. These results suggest the need for more proprioceptive information during the position task than the force task. The shorter duration of the cSP during the position task may be attributable to larger amplitude of heteronymous short latency reflexes. Sensorimotor modulations may differ with load type during constant finger force or position tasks.This work was supported by a Grant-in-Aid for Scientific Research (C) No. 08042773 from the Japan Society for the Promotion of Science (JSPS) (http://www.jsps.go.jp/english/e-grants/index.html) and a Research Grant from Niigata University of Health and Welfare (NUHW) (http://www.nuhw.ac.jp/e/). HK received both grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Seasonal Study of the Kako River Discharge Dynamics into Harima Nada Using a Coupled Atmospheric–Marine Model

    Get PDF
    Pintos Andreoli V., Shimadera H., Yasuga H., et al. Seasonal Study of the Kako River Discharge Dynamics into Harima Nada Using a Coupled Atmospheric–Marine Model. Water (Switzerland) 16, 614 (2024); https://doi.org/10.3390/w16040614.This study developed a coupled atmospheric–marine model using the COAWST model system for the Harima Nada area between spring 2010 and winter 2011 to evaluate the seasonal influence of the Kako River’s discharge in the sea. The Kako River is one of the largest rivers in southwest Japan, contributing almost half of the freshwater discharged in the Harima Nada region in the Seto Inland Sea. Validation was conducted for the entire period, showing a good performance for the atmospheric and marine variables selected. Multiple experiments injecting an inert tracer in the Kako River estuary were performed to simulate the seasonal river water distribution from the estuary into the sea and to analyze the seasonal differences in concentration patterns and mean residence times in Harima Nada. Because the study area is shallow, the results were evaluated at the surface and 10 m depth layers and showed significant seasonal differences in tracer distribution, circulation patterns, and mean residence times for the region. On the other hand, differences seemed to not be significant during the same season at different depths. The obtained results also agreed with the area’s natural water circulation, showing that the Kako River waters tend to distribute towards the west coast of Harima Nada in the warmer seasons but shift towards the east in winter. The influence of the Kako River in the center of the study area is seasonal and strongly dependent on the direction of the horizontal velocities more than their magnitude. The mean residence times varied seasonally from approximately 30 days in spring to 12 days in fall. The magnitude of the horizontal velocity was found to be maximum during summer when circulation patterns at the surface and 10 m depth in the central part of Harima Nada also seem to promote the strongest horizontal and vertical mixes

    Crystal architectures of a layered silicate on monodisperse spherical silica particles cause the topochemical expansion of the core-shell particles

    Get PDF
    Anisotropic structural changes in an expandable layered silicate (directed towards the c-axis) occurring on isotropic and monodisperse microspheres were detected by measurable increases in the grain size. The hierarchical changes were observed through pursing the sophisticated growth of expandable layered silicate crystals on monodisperse spherical silica particles with diameters of 1.0 mu m; the core-shell hybrids with a quite uniform grain size were successfully produced using a rotating Teflon-lined autoclave by reacting spherical silica particles in a colloidal suspension with lithium and magnesium ions under alkaline conditions at 373 K. The size distribution of the core-shell particles tended to be uniform when the amount of lithium ions in the initial mixture decreased. The intercalation of dioctadecyldimethylammonium ions into the small crystals through cation-exchange reactions expanded the interlayer space, topochemically increasing the grain size without any change occurring in the shapes of the core-shell particles. (C) 2015 Elsevier Inc. All rights reserved.ArticleMICROPOROUS AND MESOPOROUS MATERIALS. 215:168-174 (2015)journal articl

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Detección de similitudes y diferencias dentro de un mismo movimiento de golpeo mediante un análisis del rendimiento basado en inteligencia artificial: ejemplo del servicio en tenis

    Get PDF
    El análisis del rendimiento basado en inteligencia artificial (IA) tiene el potencial de apoyar la retroalimentación en el entrenamiento. Sin embargo, aún no se ha propuesto un método útil. El objetivo de este estudio es desarrollar un análisis del rendimiento basado en IA para apoyar el entrenamiento de tenis. En concreto, se investiga la precisión en la detección de similitudes y diferencias dentro de un mismo movimiento de golpeo. Los participantes fueron dos tenistas con más de diez años de experiencia en tenis a nivel regional. Este estudio se centró en el servicio en tenis y se grabaron videos de los dos primeros servicios desde ambos lados de la cancha (número de servicios: 40 intentos) con un teléfono inteligente situado en la valla detrás del participante. El código de análisis se ejecutó en Python, y la parte principal involucró el uso de BlazePose, que estima las coordenadas X, Y y Z de una posición humana. Se cortaron videos de 2 s, con un solapamiento de 1 s entre cada video, y se eligió manualmente uno de ellos como el video estándar. Los videos se compararon con los de comparación y se calcularon automáticamente las puntuaciones de diferencia para el total y para cada parte del cuerpo. Se realizó un análisis basado en IA que consideraba 12 condiciones y combinaba los dos primeros servicios desde ambos lados y de los diferentes jugadores. Como resultado, se confirmó cierta precisión (≥ 70%) en la detección de fases solapadas entre videos. Además, las partes del cuerpo evaluadas manualmente que mostraban movimientos diferentes por un entrenador certificado correspondían con las tres primeras partes diferentes del análisis basado en IA para 8 de las 12 condiciones. El análisis de rendimiento basado en IA propuesto puede extraer eficazmente fases similares o solapadas y sugerir partes del cuerpo que muestran movimientos diferentes.Artificial intelligence (AI) -based performance analysis has the potential to support feedback in coaching; however, a useful method has not yet been proposed. This study aims to develop an AI-based performance analysis to support tennis coaching. Specifically, we investigate the accuracy of detecting similarities and differences within the same shot movement. The participants were two tennis players with more than ten years of tennis experience at the regional level. This study targeted service in tennis and videos of the 1st and 2nd service from both sides (number of services: 40 attempts) were recorded using a smartphone located on the fence behind the participant. The analysis code was executed in Python, and the main part involved the use of BlazePose, which estimates the X-, Y-, and Z-coordinates of a human pose. Video clips of 2 s were cut, with a 1 s overlap between each clip, and one of the clips was manually chosen as the standard clip. The clips were compared with the comparison clips, and the difference scores for the total and each body part were automatically calculated. An AI-based analysis was conducted considering 12 conditions combining the 1st and 2nd services from both sides and different players. As a result, a certain accuracy (≥ 70%) was confirmed for detecting overlapping phases between clips. Moreover, manually evaluated body parts that showed different movements by a certified coach corresponded to the top three different parts in the AI-based analysis for 8 of the 12 conditions. The proposed AI-based performance analysis can effectively extract similar or overlapping phases and suggest body parts exhibiting different movements
    corecore