1,994 research outputs found

    Differential effects of Vpr on single-cycle and spreading HIV-1 infections in CD4 + T-cells and dendritic cells

    Get PDF
    Journal ArticleThe Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4+ T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with singlecycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4+ T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4+ T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell

    TRIM5 Acts as More Than a Retroviral Restriction Factor

    Get PDF
    The retrovirus restriction factor TRIM5α blocks post-entry infection of retroviruses in a species-specific manner. As a cellular E3 ubiquitin ligase, TRIM5α binds to the retroviral capsid lattice in the cytoplasm of an infected cell and accelerates the uncoating process of retroviral capsid, thus providing a potent restriction to HIV-1 and other retrovirus infections. The precise mechanism by which this restriction is imposed remains under scrutiny, and evidence is lacking to link the E3 ubiquitin ligase activity of TRIM5α to its ability to restrict retrovirus infection. In a recent study, Pertel and colleagues have uncovered the link between the two, providing compelling evidence to suggest that following the interaction with the retroviral capsid, TRIM5 triggers an antiviral innate immune response by functioning as a pattern recognition receptor [1]. This unique function of TRIM5 is dependent on its association with the E2 ubiquitin-conjugating enzyme complex UBC13-UEV1A and subsequent activation of the TAK1 kinase complex and downstream genes involved in innate immune responses. These findings have defined a novel function for TRIM5 as a pattern recognition receptor in innate immune recognition and provided valuable mechanistic insight into its role as a retroviral restriction factor. Here we discuss the significance of these new findings in understanding TRIM5-mediated HIV restriction

    Reconciling intrinsic properties of activating TNF receptors by native ligands versus synthetic agonists

    Get PDF
    The extracellular domain of tumor necrosis factor receptors (TNFR) generally require assembly into a homotrimeric quaternary structure as a prerequisite for initiation of signaling via the cytoplasmic domains. TNF receptor homotrimers are natively activated by similarly homo-trimerized TNF ligands, but can also be activated by synthetic agonists including engineered antibodies and Fc-ligand fusion proteins. A large body of literature from pre-clinical models supports the hypothesis that synthetic agonists targeting a diverse range of TNF receptors (including 4-1BB, CD40, OX40, GITR, DR5, TNFRSF25, HVEM, LTβR, CD27, and CD30) could amplify immune responses to provide clinical benefit in patients with infectious diseases or cancer. Unfortunately, however, the pre-clinical attributes of synthetic TNF receptor agonists have not translated well in human clinical studies, and have instead raised fundamental questions regarding the intrinsic biology of TNF receptors. Clinical observations of bell-shaped dose response curves have led some to hypothesize that TNF receptor overstimulation is possible and can lead to anergy and/or activation induced cell death of target cells. Safety issues including liver toxicity and cytokine release syndrome have also been observed in humans, raising questions as to whether those toxicities are driven by overstimulation of the targeted TNF receptor, a non-TNF receptor related attribute of the synthetic agonist, or both. Together, these clinical findings have limited the development of many TNF receptor agonists, and may have prevented generation of clinical data which reflects the full potential of TNF receptor agonism. A number of recent studies have provided structural insights into how different TNF receptor agonists bind and cluster TNF receptors, and these insights aid in deconvoluting the intrinsic biology of TNF receptors with the mechanistic underpinnings of synthetic TNF receptor agonist therapeutics

    SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons

    Get PDF
    BACKGROUND: SAMHD1 is an HIV-1 restriction factor in non-dividing monocytes, dendritic cells (DCs), macrophages, and resting CD4(+) T-cells. Acting as a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, SAMHD1 hydrolyzes dNTPs and restricts HIV-1 infection in macrophages and resting CD4(+) T-cells by decreasing the intracellular dNTP pool. However, the intracellular dNTP pool in DCs and its regulation by SAMHD1 remain unclear. SAMHD1 has been reported as a type I interferon (IFN)-inducible protein, but whether type I IFNs upregulate SAMHD1 expression in primary DCs and CD4(+) T-lymphocytes is unknown. RESULTS: Here, we report that SAMHD1 significantly blocked single-cycle and replication-competent HIV-1 infection of DCs by decreasing the intracellular dNTP pool and thereby limiting the accumulation of HIV-1 late reverse transcription products. Type I IFN treatment did not upregulate endogenous SAMHD1 expression in primary DCs or CD4(+) T-lymphocytes, but did in HEK 293T and HeLa cell lines. When SAMHD1 was over-expressed in these two cell lines to achieve higher levels than that in DCs, no HIV-1 restriction was observed despite partially reducing the intracellular dNTP pool. CONCLUSIONS: Our results suggest that SAMHD1-mediated reduction of the intracellular dNTP pool in DCs is a common mechanism of HIV-1 restriction in myeloid cells. Endogenous expression of SAMHD1 in primary DCs or CD4(+) T-lymphocytes is not upregulated by type I IFNs

    Storage and Processing of Information Using Molecules: The All-Photonic Approach with Simple and Multi-Photochromic Switches

    Get PDF
    The use of photochromes for the implementation of molecular logic operations is a very promising approach toward molecular computing. This statement is based on a) the possibility of operating such molecular devices exclusively with photonic signals and b) spatiotemporally and remotely controlled switching, which is characteristic for photochromes. Herein, a brief overview of the application of simple photochromes and multi-photochromic conjugates for the small-scale functional integration of complicated logic circuits is given. This complements and extends efforts to design molecular photochromic memories for data storage described by many research groups worldwide

    Optical lithography patterning of SiO2 layers for interface passivation of thin film solar cells

    Get PDF
    Ultrathin Cu(In,Ga)Se2 solar cells are a promising way to reduce costs and to increase the electrical performance of thin film solar cells. In this work, we develop an optical lithography process that can produce sub-micrometer contacts in a SiO2 passivation layer at the CIGS rear contact. Furthermore, an optimization of the patterning dimensions reveals constrains over the features sizes. High passivation areas of the rear contact are needed to passivate the CIGS interface so that high performing solar cells can be obtained. However, these dimensions should not be achieved by using long distances between the contacts as they lead to poor electrical performance due to poor carrier extraction. This study expands the choice of passivation materials already known for ultrathin solar cells and its fabrication techniques.publishe

    Rhodamine-Appended Bipyridine: XOR and OR Logic Operations Integrated in an Example of Controlled Metal Migration

    Get PDF
    A new bipyridyl derivative 1 bearing rhodamineB as visible fluorophore was designed, synthesized and characterized as a fluorescent and colorimetric sensor for metal ions. Interaction with Cu2+, Zn2+, Cd2+, Hg+, and Hg2+ ions was followed by UV/Vis and emission spectroscopy. Upon addition of these metal ions, different colorimetric and fluorescent responses were observed. Off-on-off (Cu2+, Zn2+, and Hg2+) and off-on (Hg+ and Cd2+) systems were obtained. Probe 1 was explored to mimic XOR and OR logic operations for the simultaneous detection of Hg+-Cu2+ and Hg+-Zn2+ pairs, respectively. DFT calculations were also performed to gain insight into the lowest-energy gas-phase conformation of free receptor 1 as well as the atomistic details of the coordination modes of the various metal ions

    Control of Noise in Chemical and Biochemical Information Processing

    Full text link
    We review models and approaches for error-control in order to prevent the buildup of noise when gates for digital chemical and biomolecular computing based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information processing. Solvable rate-equation models illustrate several recently developed methodologies for gate-function optimization. We also survey future challenges and possible new research avenues.Comment: 39 pages, 8 figures, PD
    • …
    corecore