2,500 research outputs found

    Absorbing systematic effects to obtain a better background model in a search for new physics

    Full text link
    This paper presents a novel approach to estimate the Standard Model backgrounds based on modifying Monte Carlo predictions within their systematic uncertainties. The improved background model is obtained by altering the original predictions with successively more complex correction functions in signal-free control selections. Statistical tests indicate when sufficient compatibility with data is reached. In this way, systematic effects are absorbed into the new background model. The same correction is then applied on the Monte Carlo prediction in the signal region. Comparing this method to other background estimation techniques shows improvements with respect to statistical and systematical uncertainties. The proposed method can also be applied in other fields beyond high energy physics

    Birdsongs alleviate anxiety and paranoia in healthy participants

    Get PDF

    Enzyme-Directed Mutasynthesis: A Combined Experimental and Theoretical Approach to Substrate Recognition of a Polyketide Synthase

    No full text
    Acyltransferase domains control the extender unit recognition in Polyketide Synthases (PKS) and thereby the side-chain diversity of the resulting natural products. The enzyme engineering strategy presented here allows the alteration of the acyltransferase substrate profile to enable an engineered biosynthesis of natural product derivatives through the incorporation of a synthetic malonic acid thioester. Experimental sequence−function correlations combined with computational modeling revealed the origins of substrate recognition in these PKS domains and enabled a targeted mutagenesis. We show how a single point mutation was able to direct the incorporation of a malonic acid building block with a non-native functional group into erythromycin. This approach, introduced here as enzyme-directed mutasynthesis, opens a new field of possibilities beyond the state of the art for the combination of organic chemistry and biosynthesis toward natural product analogues

    Transuranium compounds probed by nonresonant inelastic x-ray scattering

    Get PDF
    While x-ray absorption spectroscopy is mainly governed by electric-dipole transitions, the technique of nonresonant inelastic x-ray scattering (NIXS) offers the possibility to explore higher-order multipole transitions. These transitions obey different selection rules that can reach final states of higher angular momenta, opening complementary spectroscopic perspectives. Here, we investigate the suitability of NIXS to study transuranium compounds. We show that the K edge of the Be encapsulation can be practically fully excluded by using the imaging capabilities of the technique arising from the position of the signals on the multidetector. Experimental results for the multipole transitions at the actinide O-4,O-5 edges (90-120 eV) in UO2, NpO2, PuO2, and Pu2O3 are compared with multielectronic calculations. The spectral features are shown to be very sensitive to the ratio of the triakontadipole and octupole transitions, which could potentially be used to assess the radial expansion of the 5f wave function, which is expected to occur in covalent mixing with the O 2p states.Peer reviewe

    CeRu4_4Sn6_6: a strongly correlated material with nontrivial topology

    Get PDF
    Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4_4Sn6_6 is a strongly correlated material with non-trivial topology.Comment: 10 pages, 6 figures, submitted to Scientific Report

    Optimal control theory for unitary transformations

    Full text link
    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the X1Σg+X^1\Sigma^+_g electronic state of Na2_2. Raman-like transitions through the A1Σu+A^1\Sigma^+_u electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond pulse. Out of the schemes studied the square modulus scheme converges fastest. A study of the implementation of the QQ qubit Fourier transform in the Na2_2 molecule was carried out for up to 5 qubits. The classical computation effort required to obtain the algorithm with a given fidelity is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse intensity with the number of qubits in the transformation is rationalized.Comment: 32 pages, 6 figure

    Antiferromagnetic correlations in strongly valence fluctuating CeIrSn

    Full text link
    CeIrSn with a quasikagome Ce lattice in the hexagonal basal plane is a strongly valence fluctuating compound, as we confirm by hard x-ray photoelectron spectroscopy and inelastic neutron scattering, with a high Kondo temperature of TK480T_{\mathrm{K}}\sim 480\,K. We report a negative in-plane thermal expansion α/T\alpha/T below 2\,K, which passes through a broad minimum near 0.75\,K. Volume and aa-axis magnetostriction for BaB \parallel a are markedly negative at low fields and change sign before a sharp metamagnetic anomaly at 6\,T. These behaviors are unexpected for Ce-based intermediate valence systems, which should feature positive expansivity. Rather they point towards antiferromagnetic correlations at very low temperatures. This is supported by muon spin relaxation measurements down to 0.1\,K, which provide microscopic evidence for a broad distribution of internal magnetic fields. Comparison with isostructural CeRhSn suggests that these antiferromagnetic correlations emerging at TTKT\ll T_{\mathrm{K}} result from geometrical frustration.Comment: to be published in Phys. Rev. Let

    Singlet magnetism in intermetallic UGa2_2 unveiled by inelastic x-ray scattering

    Full text link
    Using high resolution tender-x-ray resonant inelastic scattering and hard-x-ray non-resonant inelastic scattering beyond the dipole limit we were able to detect electronic excitations in intermetallic UGa2_2 that are highly atomic in nature. Analysis of the spectral lineshape reveals that the local 5f25f^2 configuration characterizes the correlated nature of this ferromagnet. The orientation and directional dependence of the spectra indicate that the ground state is made of the Γ1\Gamma_1 singlet and/or Γ6\Gamma_6 doublet symmetry. With the ordered moment in the abab plane, we infer that the magnetism originates from the higher lying Γ6\Gamma_6 doublet being mixed with the Γ1\Gamma_1 singlet due to inter-site exchange, qualifying UGa2_2 to be a true quantum magnet. The ability to observe atomic excitations is crucial to resolve the on-going debate about the degree of localization versus itineracy in U intermetallics.Comment: 9 pages, 7 figure

    Spectroscopic evidence of Kondo-induced quasi-quartet in CeRh2_2As2_2

    Full text link
    CeRh2_2As2_2 is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low temperature properties of this heavy fermion compound requires a quartet Ce3+^{3+} crystal-field ground state. Here we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh2_2As2_2. The temperature dependence of the linear dichroism unambiguously reveils the impact of Kondo physics for coupling the Kramer's doublets into an effective quasi-quartet. Non-resonant inelastic x-ray scattering data find that the Γ7|\Gamma_7^- \rangle state with its lobes along the 110 direction of the tetragonal structure (xyxy orientation) contributes most to the multi-orbital ground state of CeRh2_2As2_2.Comment: 8 pages, 7 figure

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore