2,193 research outputs found

    Experimental optimization of simulated ring rolling operation for heavy rail industry

    Get PDF
    “Industrially cast AISI 1070 steel wheel pre-forms from Amsted Rail Co. were experimentally hot rolled to simulate the conditions for industrial wheel rolling. Ring rolling of near net shape castings can improve location specific properties by decreasing segregation, closing porosity, and reducing grain size without the use of multiple forging operations in a traditional forging line. As-cast wheel sections were subjected to thermomechanical processing routes using a 2-high rolling mill in a temperature range of 830°C to 1200°C. The goal being to simulate the ring rolling process and optimize benefits of mechanical properties of the as-rolled steel. Charpy V- and U-notch impact tests were conducted at -20ºC and 20ºC, respectively, as a function of thermomechanical processing and notch orientation. Mitigation of cast defects such as inclusions and shrinkage porosity by hot rolling were quantified utilizing scanning electron microscopy and micro-computed X-Ray tomography. Microshrinkage porosity was shown to be virtually eliminated at a 66% reduction. A rolling temperature of 830°C resulted in a 114% increase in KCU at 20°C and 67% increase at -20°C in KCV for L-S impact properties through refinement of prior austenite grain size. Anisotropy related to MnS stringers in the rolling direction were the primary cause for reduction in impact toughness in the T-L orientation although grain texture also likely plays a role. Hot tensile tests performed between 830°C to 1200°C in strain rates of 0.1 to 10 s-1 were utilized to develop a Johnson-Cook Strength model. The experimental parameters determined from the Johnson-Cook model were used as inputs to develop a Finite Element Analysis model of the modified wheel rolling process utilizing FORGE NxT software”--Abstract, page iv

    On the Effect of Hot Rolling on Inclusion Size and Distribution in a Cast AISI 1070 Steel Railroad Wheel

    Get PDF
    The goal of this work is to examine the effect of hot deformation on shrinkage porosity and nonmetallic inclusions in an AISI 1070 grade steel industrially produced wheel casting. Steel cleanliness is an important consideration as it influences the mechanical properties of the final product. A high density of porosity and inclusions have been shown to be detrimental for mechanical properties, especially during hot rolling. Using a laboratory-scale rolling mill, cast preforms were subjected to a 66% cumulative reduction to determine the effect of thermomechanical processing on void closure and inclusions that may produce anisotropy in mechanical properties. Quantitative automated feature analysis, AFA, of inclusion type, size, morphology, and distribution was conducted utilizing an Aspex PICA 1020 scanning electron microscope to determine differences in inclusions and shrinkage porosity in the as-cast and as-rolled conditions. The results were compared with previously reported impact toughness values which indicated a trend with MnS projected length and average impact toughness in the T-L orientation. Reduction in shrinkage porosity was also verified utilizing 3D micro-X-ray CT scans. The AFA results showed a decrease in shrinkage porosity from 177 ppm in the as-cast condition to less than 35 ppm after rolling. Pores were in general much smaller and widely distributed after hot rolling and this would suggest improved impact properties. Analysis of nonmetallic inclusions revealed three primary categories of inclusions that included MnS, Al2O3, and complex inclusions that mainly consisted of MnS with an Al2O3 core, with small quantities of mixed silicates of Mn and Al and calcium aluminates (CaAl2O4)

    Generation of unusually low frequency plasmaspheric hiss

    Get PDF
    It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on 30 September 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ∼20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave raypaths via the HOTRAY ray tracing code with measured plasma density and calculating raypath-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm-injected electrons is positive but rather weak, leading to small wave gain (∼10 dB) during a single equatorial crossing. Propagation characteristics aided by the sharp density gradient associated with the plasmapause, however, can enable these low-frequency waves to undergo cyclic raypaths, which return to the unstable region leading to repeated amplification to yield sufficient net wave gain (>40 dB) to allow waves to grow from the thermal noise

    Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women

    Get PDF
    Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery

    Transcription errors induce proteotoxic stress and shorten cellular lifespan

    Get PDF
    Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitored yeast cells that were genetically engineered to display error-prone transcription. We discovered that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease. We further found that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer’s disease, and shorten the lifespan of cells. These experiments reveal a novel, basic biological process that directly affects cellular health and aging

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Search for top squark pair production in pp collisions at root s=13 TeV using single lepton events

    Get PDF
    Peer reviewe
    corecore