114 research outputs found

    Technological Devices in the Archives: A Policy Analysis

    Get PDF
    Doing research in the archive is the cornerstone of humanities scholarship. Various archives institute policies regarding the use of technological devices, such as mobile phones, laptops, and cameras in their reading rooms. Such policies directly affect the scholars as the devices mediate the nature of their interaction with the source materials in terms of capturing, organizing, note taking, and record keeping for future use of found materials. In this paper, we present our analysis of the policies of thirty archives regarding the use of technology in their reading rooms. This policy analysis, along with data from interviews of scholars and archivists, is intended to serve as a basis for developing mobile applications for assisting scholars in their research activities. In this paper we introduce an early prototype of such a mobile application— AMTracker.Informatio

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO₂ radicals using laser-induced fluorescence spectroscopy

    Get PDF
    Laser-induced fluorescence (LIF) spectroscopy has been widely applied to fieldwork measurements of OH radicals and HO2, following conversion to OH, over a wide variety of conditions, on different platforms and in simulation chambers. Conventional calibration of HOx (OH + HO2) instruments has mainly relied on a single method, generating known concentrations of HOx from H2O vapour photolysis in a flow of zero air impinging just outside the sample inlet (SHOx = CHOx . [HOx ], where SHOx is the observed signal and CHOx is the calibration factor). The fluorescence assay by gaseous expansion (FAGE) apparatus designed for HOx measurements in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) at the University of Leeds has been used to examine the sensitivity of FAGE to external gas temperatures (266–348 K). The conventional calibration methods give the temperature dependence of COH (relative to the value at 293 K) of (0.0059±0.0015) K−1 and CHO2 of (0.014±0.013) K−1. Errors are 2σ . COH was also determined by observing the decay of hydrocarbons (typically cyclohexane) caused by OH reactions giving COH (again, relative to the value at 293 K) of (0.0038 ± 0.0007) K−1. Additionally, CHO2 was determined based on the second-order kinetics of HO2 recombination with the temperature dependence of CHO2 , relative to 293 K being (0.0064 ± 0.0034) K−1. The temperature dependence of CHOx depends on the HOx number density, quenching, the relative population of the probed OH rotational level and HOx transmission from the inlet to the detection axis. The first three terms can be calculated and, in combination with the measured values of CHOx, show that HOx transmission increases with temperature. Comparisons with other instruments and the implications of this work are discussed

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Temporal evolution of solar energetic particle spectra

    Get PDF
    During solar flares and coronal mass ejections, solar energetic par- ticles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this paper we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an “arch” shape which then straightens into a power law later in the event, after times of the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore