106 research outputs found
Glial Glutamate Transporter-Mediated Plasticity: System xc-/xCT/SLC7A11 and EAAT1/2 in Brain Diseases
Glial cells play an essential role in the complex function of the nervous system. In particular, astrocytes provide nutritive support for neuronal cells and are involved in regulating synaptic transmission. Oligodendrocytes ensheath axons and support information transfer over long distances. Microglial cells constitute part of the innate immune system in the brain. Glial cells are equipped with the glutamate-cystine-exchanger xCT (SLC7A11), the catalytic subunit of system x
c
−
, and the excitatory amino acid transporter 1 (EAAT1, GLAST) and EAAT2 (GLT-1). Thereby, glial cells maintain balanced extracellular glutamate levels that enable synaptic transmission and prevent excitotoxic states. Expression levels of these transporters, however, are not fixed. Instead, expression of glial glutamate transporters are highly regulated in reaction to the external situations. Interestingly, such regulation and homeostasis is lost in diseases such as glioma, (tumor-associated) epilepsy, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis or multiple sclerosis. Upregulation of system x
c
−
(xCT or SLC7A11) increases glutamate export from the cell, while a downregulation of EAATs decreases intracellular glutamate import. Occurring simultaneously, these reactions entail excitotoxicity and thus harm neuronal function. The release of glutamate via the antiporter system x
c
−
is accompanied by the import of cystine—an amino acid essential in the antioxidant glutathione. This homeostasis between excitotoxicity and intracellular antioxidant response is plastic and off-balance in central nervous system (CNS) diseases. System x
c
−
is highly expressed on glioma cells and sensitizes them to ferroptotic cell death. Hence, system x
c
−
is a potential target for chemotherapeutic add-on therapy. Recent research reveals a pivotal role of system x
c
−
and EAAT1/2 in tumor-associated and other types of epilepsy. Numerous studies show that in Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s disease, these glutamate transporters are dysregulated—and disease mechanisms could be interposed by targeting system x
c
−
and EAAT1/2. Interestingly, in neuroinflammatory diseases such as multiple sclerosis, there is growing evidence for glutamate transporter involvement. Here, we propose that the current knowledge strongly suggest a benefit from rebalancing glial transporters during treatment
Therapeutic Potential of Selenium in Glioblastoma
Little progress has been made in the long-term management of malignant brain tumors, leaving patients with glioblastoma, unfortunately, with a fatal prognosis. Glioblastoma remains the most aggressive primary brain cancer in adults. Similar to other cancers, glioblastoma undergoes a cellular metabolic reprogramming to form an oxidative tumor microenvironment, thereby fostering proliferation, angiogenesis and tumor cell survival. Latest investigations revealed that micronutrients, such as selenium, may have positive effects in glioblastoma treatment, providing promising chances regarding the current limitations in surgical treatment and radiochemotherapy outcomes. Selenium is an essential micronutrient with anti-oxidative and anti-cancer properties. There is additional evidence of Se deficiency in patients suffering from brain malignancies, which increases its importance as a therapeutic option for glioblastoma therapy. It is well known that selenium, through selenoproteins, modulates metabolic pathways and regulates redox homeostasis. Therefore, selenium impacts on the interaction in the tumor microenvironment between tumor cells, tumor-associated cells and immune cells. In this review we take a closer look at the current knowledge about the potential of selenium on glioblastoma, by focusing on brain edema, glioma-related angiogenesis, and cells in tumor microenvironment such as glioma-associated microglia/macrophages
Designing properties of (Na1/2Bix) TiO3-based materials through A-site non-stoichiometry
Point defects largely determine the properties of functional oxides. So far, limited knowledge exists on
the impact of cation vacancies on electroceramics, especially in (Na1/2Bi1/2)TiO3 (NBT)-based materials.
Here, we report on the drastic effect of A-site non-stoichiometry on the cation diffusion and functional
properties in the representative ferroelectric (Na1/2Bi1/2)TiO3–SrTiO3 (NBT–ST). Experiments on NBT/ST
bilayers and NBT–ST with Bi non-stoichiometry reveal that Sr2+-diffusion is enhanced by up to six orders
of magnitude along the grain boundaries in Bi-deficient material as compared to Bi-excess material with
values of grain boundary diffusion B108 cm2 s
1 and B1013 cm2 s
1 in the bulk. This also means
a nine orders of magnitude higher diffusion coefficient compared to reports from other Sr-diffusion
coefficients in ceramics. Bi-excess leads to the formation of a material with a core–shell microstructure.
This results in 38% higher strain and one order of magnitude lower remanent polarization. In contrast,
Bi-deficiency leads to a ceramic with a grain size six times larger than in the Bi-excess material and
homogeneous distribution of compounds. Thus, the work sheds light on the rich opportunities that
A-site stoichiometry offers to tailor NBT-based materials microstructure, transport properties, and
electromechanical properties.T. F., A. A., and K. G. W. gratefully acknowledge financial support
by the Deutsche Forschungsgemeinschaft under WE 4972/2 and
FR 3718/1-1. T. F. thanks Dr Edvinas Navickas for his help with the ToF-SIMS measurements. M. A. acknowledges the support of the
Feodor Lynen Research Fellowship Program of the Alexander von
Humboldt Foundation. M. D. and L. M.-L. acknowledge financial
support from the Hessen State Ministry of Higher Education,
Research and the Arts via LOEWE RESPONSE. L. M.-L. acknowledges financial support from DFG Grant MO 3010/3-1
Neurocritical care complications and interventions influence the outcome in aneurysmal subarachnoid hemorrhage
Background
This observational study was performed to show the impact of complications and interventions during neurocritical care on the outcome after aneurysmal subarachnoid hemorrhage (SAH).
Methods
We analyzed 203 cases treated for ruptured intracranial aneurysms, which were classified regarding clinical outcome after one year according to the modified Rankin Scale (mRS). We reviewed the data with reference to the occurrence of typical complications and interventions in neurocritical care units.
Results
Decompressive craniectomy (odds ratio 21.77 / 6.17 ; p < 0.0001 / p = 0.013), sepsis (odds ratio 14.67 / 6.08 ; p = 0.037 / 0.033) and hydrocephalus (odds ratio 3.71 / 6.46 ; p = 0.010 / 0.00095) were significant predictors for poor outcome and death after one year beside “World Federation of Neurosurgical Societies” (WFNS) grade (odds ratio 3.86 / 4.67 ; p < 0.0001 / p < 0.0001) and age (odds ratio 1.06 / 1.10 ; p = 0.0030 / p < 0.0001) in our multivariate analysis (binary logistic regression model).
Conclusions
In summary, decompressive craniectomy, sepsis and hydrocephalus significantly influence the outcome and occurrence of death after aneurysmal SAH
Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema
Human malignant brain tumors such as gliomas are devastating due to the induction of cerebral edema and neurodegeneration. A major contributor to glioma-induced neurodegeneration has been identified as glutamate. Glutamate promotes cell growth and proliferation in variety of tumor types. Intriguently, glutamate is also an excitatory neurotransmitter and evokes neuronal cell death at high concentrations. Even though glutamate signaling at the receptor and its downstream effectors has been extensively investigated at the molecular level, there has been little insight into how glutamate enters the tumor microenvironment and impacts on metabolic equilibration until recently. Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11) appeared to be a major player in this process, mediating glutamate secretion and ferroptosis. Also, PPARγ is associated with ferroptosis in neurodegeneration, thereby destroying neurons and causing brain swelling. Although these data are intriguing, tumor-associated edema has so far been quoted as of vasogenic origin. Hence, glutamate and PPARγ biology in the process of glioma-induced brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA receptors in vivo, brain swelling and peritumoral alterations can be mitigated. This review sheds light on the role of glutamate in brain tumors presenting the conceptual challenge that xCT disruption causes ferroptosis activation in malignant brain tumors. Thus, interfering with glutamate takes center stage in forming the basis of a metabolic equilibration approach
Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
Treatment of ruptured intracranial aneurysms yesterday and now
Objective
This prospective study is designed to detect changes in the treatment of ruptured intracranial aneurysms over a period of 17 years.
Methods
We compared 361 treated cases of aneurysm occlusion after subarachnoid hemorrhage from 1997 to 2003 with 281 cases from 2006 to 2014. Specialists of neuroradiology and vascular neurosurgery decided over the modality assignment. We established a prospective data acquisition in both groups to detect significant differences within a follow-up time of one year. With this setting we evaluated the treatment methods over time and compared endovascular with microsurgical treatment.
Results
When compared to the earlier group, microsurgical treatment was less frequently chosen in the more recent collective because of neck-configuration. Endovascular treatment was chosen more frequently over time (31.9% versus 48.8%). Occurrence of initial symptomatic ischemic stroke was significantly lower in the clipping group compared to the endovascular group and remained stable over time. The number of reinterventions due to refilled treated aneurysms significantly decreased in the endovascular group at one-year follow-up, but the significantly better occlusion- and reintervention-rate of the microsurgical group persisted. The rebleeding rate in the endovascular group at one year follow-up decreased from 6.1% to 2.2% and showed no statistically significant difference to the microsurgical group, anymore (endovascular 2.2% versus microsurgical 0.0%, p = 0.11).
Conclusion
Microsurgical clipping still has some advantages, however endovascular treatment is improving rapidly
Functionalization of the Classical Oxoanion VO43- by Bissilylated Phosphazene Ligand: Syntheses and X-ray Structure
The reaction of the acyclic phosphazene ligand, HNP(NMe2)2NSiMe32 (1) with NH4VO3 in 1:1 molar ratio resulted in the formation of an ionic species NP(NMe2)2NH2+2 VO4(SiMe3)2- (2) in quantitative yield. The reaction shows the migration of silyl group from the terminal nitrogen atoms of the phosphazene ligand 1 to the oxygen of the vanadyl group. Compound 2 crystallizes as monomer in the solid state. The X-ray structure of the phosphazenium salt, NP(NMe2)2NH2+2Cl- (3) has also been described which crystallizes as a polymeric zig-zag chain in the solid state
- …