67 research outputs found

    Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    Get PDF
    Stimulated Brillouin scattering in a multimode step-index fiber can be used to generate a counter-propagating, phase-conjugate beam that would prove useful in many applications, such as near diffraction limited, double-pass high-power amplifiers or coherent beam combination. Relatively little modeling of such a fiber-based phase conjugator has been done, making design decisions regarding type and length of fiber largely guesswork. A numerical model was constructed with the aim of providing educated predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical perturbation algorithm was constructed to search for the Stokes modal arrangement with the highest gain for a given pump input. The gain was calculated from the differential equation for the Stokes power under the assumption that all pump/Stokes modes decay/grow at the same rate, and that the fiber was lossless. The model proves to be much more accurate in predicting experimentally observed phase conjugate fidelities than previous efforts. In addition, the phenomenon of beam cleanup to higher order fiber modes is predicted and explained

    ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    Get PDF
    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station

    Neurological Soft Signs in Individuals with Pathological Gambling

    Get PDF
    Increased neurological soft signs (NSSs) have been found in a number of neuropsychiatric syndromes, including chemical addiction. The present study examined NSSs related to perceptual-motor and visuospatial processing in a behavioral addiction viz., pathological gambling (PG). As compared to mentally healthy individuals, pathological gamblers displayed significantly poorer ability to copy two- and three-dimensional figures, to recognize objects against a background noise, and to orient in space on a road-map test. Results indicated that PG is associated with subtle cerebral cortical abnormalities. Further prospective clinical research is needed to address the NSSs' origin and chronology (e.g., predate or follow the development of PG) as well as their response to therapeutic interventions and/or their ability to predict such a response

    Quantum teleportation on a photonic chip

    Full text link
    Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementations have largely focussed on achieving long distance teleportation due to its suitability for decoherence-free communication. Teleportation also plays a vital role in the scalability of photonic quantum computing, for which large linear optical networks will likely require an integrated architecture. Here we report the first demonstration of quantum teleportation in which all key parts - entanglement preparation, Bell-state analysis and quantum state tomography - are performed on a reconfigurable integrated photonic chip. We also show that a novel element-wise characterisation method is critical to mitigate component errors, a key technique which will become increasingly important as integrated circuits reach higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted manuscript; Nature Photonics (2014

    On-chip low loss heralded source of pure single photons

    Full text link
    A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.Comment: 11 pages, 5 figure

    Current and emerging developments in subseasonal to decadal prediction

    Get PDF
    Weather and climate variations of subseasonal to decadal timescales can have enormous social, economic and environmental impacts, making skillful predictions on these timescales a valuable tool for decision makers. As such, there is a growing interest in the scientific, operational and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) timescales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) timescales, while the focus remains broadly similar (e.g., on precipitation, surface and upper ocean temperatures and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal and externally-forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correct, calibration and forecast quality assessment; model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Prograame (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Writers Talk Featuring Justin Spring

    No full text
    Interview featuring Justin SpringOhio State University. Center for the Study and Teaching of Writin

    Single photon generation and quantum computing with integrated photonics

    No full text
    Photonics has consistently played an important role in the investigation of quantum-enhanced technologies and the corresponding study of fundamental quantum phenomena. The majority of these experiments have relied on the free space propagation of light between bulk optical components. This relatively simple and flexible approach often provides the fastest route to small proof-of-principle demonstrations. Unfortunately, such experiments occupy significant space, are not inherently phase stable, and can exhibit significant scattering loss which severely limits their use. Integrated photonics offers a scalable route to building larger quantum states of light by surmounting these barriers. In the first half of this thesis, we describe the operation of on-chip heralded sources of single photons. Loss plays a critical role in determining whether many quantum technologies have any hope of outperforming their classical analogues. Minimizing loss leads us to choose Spontaneous Four-Wave Mixing (SFWM) in a silica waveguide for our source design; silica exhibits extremely low scattering loss and emission can be efficiently coupled to the silica chips and fibers that are widely used in quantum optics experiments. We show there is a straightforward route to maximizing heralded photon purity by minimizing the spectral correlations between emitted photon pairs. Fabrication of identical sources on a large scale is demonstrated by a series of high-visibility interference experiments. This architecture offers a promising route to the construction of nonclassical states of higher photon number by operating many on-chip SFWM sources in parallel. In the second half, we detail one of the first proof-of-principle demonstrations of a new intermediate model of quantum computation called boson sampling. While likely less powerful than a universal quantum computer, boson sampling machines appear significantly easier to build and may allow the first convincing demonstration of a quantum-enhanced computation in the not-distant future. Boson sampling requires a large interferometric network which are challenging to build with bulk optics, we therefore perform our experiment on-chip. We model the effect of loss on our postselected experiment and implement a circuit characterization technique that accounts for this loss. Experimental imperfections, including higher-order emission from our photon pair sources and photon distinguishability, are modeled and found to explain the sampling error observed in our experiment.This thesis is not currently available in ORA

    Prereactivation propranolol fails to reduce skin conductance reactivity to prepared fear-conditioned stimuli

    Full text link
    Pharmacologic blockade of memory reconsolidation has been demonstrated in fear-conditioned rodents and humans and may provide a means to reduce fearfulness in anxiety disorders and posttraumatic stress disorder. Studying the efficacy of potential interventions in clinical populations is challenging, creating a need for paradigms within which candidate reconsolidation-blocking interventions can be readily tested. We used videos of biologically prepared conditioned stimuli (tarantulas) to test the efficacy of propranolol in blocking reconsolidation of conditioned fear in healthy young adults. Strong differential conditioning, measured by skin conductance, was observed among a screened subset of participants during acquisition. However, subsequent propranolol failed to reduce reactivity to the reactivated conditioned stimulus. These results are consistent with other recent findings and point to a need for testing other candidate drugs
    corecore