5,993 research outputs found
Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery
The observation of a new boson of mass \sim 125\gev at the CERN LHC may
finally have revealed the existence of a Higgs boson. Now we have the
opportunity to scrutinize its properties, determining its quantum numbers and
couplings to the standard model particles, in order to confirm or not its
discovery. We show that by the end of the 8 TeV run, combining the entire data
sets of ATLAS and CMS, it will be possible to discriminate between the
following discovery alternatives: a scalar or a tensor
particle with minimal couplings to photons, at a statistical
confidence level at least, using only diphotons events. Our results are based
on the calculation of a center-edge asymmetry measure of the reconstructed {\it
sPlot} scattering polar angle of the diphotons. The results based on
asymmetries are shown to be rather robust against systematic uncertainties with
comparable discrimination power to a log likelihood ratio statistic.Comment: 11 pages, 6 figures, 1 table. References added, minor typos correcte
Signal Significance in Particle Physics
The concept of the "statistical significance" of an observation, and how it is used in particle physics experiments is reviewed. More properly known as a "p-value," the statistical foundations for this concept are reviewed from a freqentist perspective. The discovery of the top quark at the Fermilab Tevatron Collider and a more recent analysis of data recorded at Fermilab are used to illustrate practical applications of these concepts
Evolutionary instability of Zero Determinant strategies demonstrates that winning isn't everything
Zero Determinant (ZD) strategies are a new class of probabilistic and
conditional strategies that are able to unilaterally set the expected payoff of
an opponent in iterated plays of the Prisoner's Dilemma irrespective of the
opponent's strategy, or else to set the ratio between a ZD player's and their
opponent's expected payoff. Here we show that while ZD strategies are weakly
dominant, they are not evolutionarily stable and will instead evolve into less
coercive strategies. We show that ZD strategies with an informational advantage
over other players that allows them to recognize other ZD strategies can be
evolutionarily stable (and able to exploit other players). However, such an
advantage is bound to be short-lived as opposing strategies evolve to
counteract the recognition.Comment: 14 pages, 4 figures. Change in title (again!) to comply with Nature
Communications requirements. To appear in Nature Communication
Top Quark Physics at the Tevatron
We review the field of top-quark physics with an emphasis on experimental
techniques. The role of the top quark in the Standard Model of particle physics
is summarized and the basic phenomenology of top-quark production and decay is
introduced. We discuss how contributions from physics beyond the Standard Model
could affect top-quark properties or event samples. The many measurements made
at the Fermilab Tevatron, which test the Standard Model predictions or probe
for direct evidence of new physics using the top-quark event samples, are
reviewed here.Comment: 50 pages, 17 figures, 2 tables; version accepted by Review of Modern
Physic
Phase transition in a spatial Lotka-Volterra model
Spatial evolution is investigated in a simulated system of nine competing and
mutating bacterium strains, which mimics the biochemical war among bacteria
capable of producing two different bacteriocins (toxins) at most. Random
sequential dynamics on a square lattice is governed by very symmetrical
transition rules for neighborhood invasion of sensitive strains by killers,
killers by resistants, and resistants by by sensitives. The community of the
nine possible toxicity/resistance types undergoes a critical phase transition
as the uniform transmutation rates between the types decreases below a critical
value above which all the nine types of strain coexist with equal
frequencies. Passing the critical mutation rate from above, the system
collapses into one of the three topologically identical states, each consisting
of three strain types. Of the three final states each accrues with equal
probability and all three maintain themselves in a self-organizing polydomain
structure via cyclic invasions. Our Monte Carlo simulations support that this
symmetry breaking transition belongs to the universality class of the
three-state Potts model.Comment: 4 page
Sociobiological Control of Plasmid copy number
Background:
All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.

Model:
Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a “cheater” or “selfish” plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.

Results:
The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal “hypercheaters” could further arrest the copy numbers to a substantially lower level.

Conclusions:
These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone
Spatial heterogeneity promotes coexistence of rock-paper-scissor metacommunities
The rock-paper-scissor game -- which is characterized by three strategies
R,P,S, satisfying the non-transitive relations S excludes P, P excludes R, and
R excludes S -- serves as a simple prototype for studying more complex
non-transitive systems. For well-mixed systems where interactions result in
fitness reductions of the losers exceeding fitness gains of the winners,
classical theory predicts that two strategies go extinct. The effects of
spatial heterogeneity and dispersal rates on this outcome are analyzed using a
general framework for evolutionary games in patchy landscapes. The analysis
reveals that coexistence is determined by the rates at which dominant
strategies invade a landscape occupied by the subordinate strategy (e.g. rock
invades a landscape occupied by scissors) and the rates at which subordinate
strategies get excluded in a landscape occupied by the dominant strategy (e.g.
scissor gets excluded in a landscape occupied by rock). These invasion and
exclusion rates correspond to eigenvalues of the linearized dynamics near
single strategy equilibria. Coexistence occurs when the product of the invasion
rates exceeds the product of the exclusion rates. Provided there is sufficient
spatial variation in payoffs, the analysis identifies a critical dispersal rate
required for regional persistence. For dispersal rates below , the
product of the invasion rates exceed the product of the exclusion rates and the
rock-paper-scissor metacommunities persist regionally despite being extinction
prone locally. For dispersal rates above , the product of the exclusion
rates exceed the product of the invasion rates and the strategies are
extinction prone. These results highlight the delicate interplay between
spatial heterogeneity and dispersal in mediating long-term outcomes for
evolutionary games.Comment: 31pages, 5 figure
Defensive alliances in spatial models of cyclical population interactions
As a generalization of the 3-strategy Rock-Scissors-Paper game dynamics in
space, cyclical interaction models of six mutating species are studied on a
square lattice, in which each species is supposed to have two dominant, two
subordinated and a neutral interacting partner. Depending on their interaction
topologies, these systems can be classified into four (isomorphic) groups
exhibiting significantly different behaviors as a function of mutation rate. On
three out of four cases three (or four) species form defensive alliances which
maintain themselves in a self-organizing polydomain structure via cyclic
invasions. Varying the mutation rate this mechanism results in an ordering
phenomenon analogous to that of magnetic Ising model.Comment: 4 pages, 3 figure
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
- …
