The observation of a new boson of mass \sim 125\gev at the CERN LHC may
finally have revealed the existence of a Higgs boson. Now we have the
opportunity to scrutinize its properties, determining its quantum numbers and
couplings to the standard model particles, in order to confirm or not its
discovery. We show that by the end of the 8 TeV run, combining the entire data
sets of ATLAS and CMS, it will be possible to discriminate between the
following discovery alternatives: a scalar JP=0+ or a tensor JP=2+
particle with minimal couplings to photons, at a 5σ statistical
confidence level at least, using only diphotons events. Our results are based
on the calculation of a center-edge asymmetry measure of the reconstructed {\it
sPlot} scattering polar angle of the diphotons. The results based on
asymmetries are shown to be rather robust against systematic uncertainties with
comparable discrimination power to a log likelihood ratio statistic.Comment: 11 pages, 6 figures, 1 table. References added, minor typos correcte