7 research outputs found

    Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Widespread use of chromium (Cr) contaminated fields due to careless and inappropriate management practices of effluent discharge, mostly from industries related to metallurgy, electroplating, production of paints and pigments, tanning, and wood preservation elevates its concentration in surface soil and eventually into rice plants and grains. In spite of many previous studies having been conducted on the effects of chromium stress, the precise molecular mechanisms related to both the effects of chromium phytotoxicity, the defense reactions of plants against chromium exposure as well as translocation and accumulation in rice remain poorly understood.</p> <p>Results</p> <p>Detailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice. To check whether the Cr-specific motifs were indeed significantly over represented in the promoter regions of Cr-responsive genes, occurrence of these motifs in whole genome sequence was carried out. In the background of whole genome, the lift value for these 14 and 13 motifs was significantly high in the test dataset. Though no functional role has been assigned to any of the motifs, but all of these are present as promoter motifs in the Database of orthologus promoters.</p> <p>Conclusion</p> <p>These findings clearly suggest that a complex network of regulatory pathways modulates Cr-response of rice. The integrated matrix of both transcriptome and metabolome data after suitable normalization and initial calculations provided us a visual picture of the correlations between components. Predominance of different motifs in the subsets of genes suggests the involvement of motif-specific transcription modulating proteins in Cr stress response of rice.</p

    Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings

    No full text
    The effect of arsenic (As) exposure on genome-wide expression was examined in rice (Oryza sativa L., ssp. Indica). A group of defense and stress-responsive genes, transporters, heat-shock proteins, metallothioneins, sulfate-metabolizing proteins, and regulatory genes showed differential expression in rice seedlings challenged with arsenate (AsV) and arsenite (AsIII). AsV stress led to upregulation or downregulation of an additional set of genes in comparison to AsIII. Differential expression of several genes that showed the highest contrast in a microarray analysis was validated by following the quantitative changes in the levels of individual transcripts following challenge with AsV, AsIII, Cd, Cr, and Pb. Most of the selected genes responded to challenge by heavy metals such as arsenic. However, expression of one of the cytochrome P450 genes (Os01g43740) in rice root was induced by AsV but not by other heavy metals. Similarly, one glutaredoxin (Os01g26912) is expressed specifically in the AsIII-treated shoot

    Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system

    No full text
    World wide arsenic (As) contamination of rice has raised much concern as it is the staple crop for millions. Four most commonly cultivated rice cultivars, Triguna, IR-36, PNR-519 and IET-4786, of the West Bengal region were taken for a hydroponic study to examine the effect of arsenate (AsV) and arsenite (AsIII) on growth response, expression of genes and antioxidants vis-a-vis As accumulation. The rice genotypes responded differentially under AsV and AsIII stress in terms of gene expression and antioxidant defences. Some of the transporters were up-regulated in all rice cultivars at lower doses of As species, except IET-4786. Phytochelatin synthase, GST and Îł-ECS showed considerable variation in their expression pattern in all genotypes, however in IET-4786 they were generally down-regulated in higher AsIII stress. Similarly, most of antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) increased significantly in Triguna, IR-36 and PNR-519 and decreased in IET-4786. Our study suggests that Triguna, IR-36 and PNR-519 are tolerant rice cultivars accumulating higher arsenic; however IET-4786 is susceptible to As-stress and accumulates less arsenic than other cultivars

    Toxicity and detoxification of heavy metals during plant growth and metabolism

    No full text

    Factors controlling arsenic contamination and potential remediation measures in soil-plant systems

    No full text
    corecore