4,379 research outputs found

    Study of the lepton flavor-violating ZτμZ'\to\tau\mu decay

    Full text link
    The lepton flavor violating ZτμZ^{\prime}\to\tau\mu decay is studied in the context of several extended models that predict the existence of the new gauge boson named ZZ^\prime. A calculation of the strength of the lepton flavor violating ZμτZ^\prime\mu\tau coupling is presented by using the most general renormalizable Lagrangian that includes lepton flavor violation. We used the experimental value of the muon magnetic dipole moment to bound this coupling, from which the Re(ΩLμτΩRμτ)\mathrm{Re}(\Omega_{L\mu\tau}\Omega^\ast_{R\mu\tau}) parameter is constrained and it is found that Re(ΩLμτΩRμτ)102\mathrm{Re}(\Omega_{L\mu\tau}\Omega^\ast_{R\mu\tau})\sim 10^{-2} for a ZZ^\prime boson mass of 2 TeV. Alongside, we employed the experimental restrictions over the τμγ\tau\to\mu\gamma and τμμ+μ\tau\to\mu\mu^+\mu^- processes in the context of several models that predict the existence of the ZZ^\prime gauge boson to bound the mentioned coupling. The most restrictive bounds come from the calculation of the three-body decay. For this case, it was found that the most restrictive result is provided by a vector-like coupling, denoted as Ωμτ2|\Omega_{\mu\tau}|^2, for the ZχZ_\chi case, finding around 10210^{-2} for a ZZ^\prime boson mass of 2 TeV. We used this information to estimate the branching ratio for the ZτμZ^\prime\to\tau\mu decay. According to the analyzed models the least optimistic result is provided by the Sequential ZZ model, which is of the order of 10210^{-2} for a ZZ^\prime boson mass around 2 TeV.Comment: Revised versio

    Automated system for diagnosing craniocerebral injury

    Get PDF
    A Russian national computing and communication system designed to assist non-specialized physicians in the diagnosis and treatment of craniocerebral injury is described

    Drift of domain walls in a harmonic magnetic field

    Full text link
    It is shown that a two-step form of the dynamic magnetization curve (and the hysteresis loop) established for a multiaxial ferrite-garnet wafer with a low quality factor (Q < 1) and considerable anisotropy in the plane (K p /K u = 14) in the frequency range of 25-1000 Hz is explained by the reconstruction of the dynamic domain structure, particularly by the established features of the drift of domain boundaries in the harmonic magnetic field. © 2013 Allerton Press, Inc

    Hard Probes in Heavy Ion Collisions at the LHC: Jet Physics

    Full text link
    We discuss the importance of high-pT hadron and jet measurements in nucleus-nucleus collisions at the CERN Large Hadron Collider.Comment: The writeup of the working group "Jet Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 123 pages. Subgroup convenors: R. Baier, X.N. Wang, U.A. Wiedemann (theory) and I.P. Lokhtin, A. Morsch (experiment). Editor: U.A. Wiedeman

    Unidirectional motion of magnetic domain walls: The experiment and numerical simulation

    Full text link
    The results of study of unidirectional motion of topologically different domain structures under the influence of periodic bipolar and unipolar magnetic field pulses applied perpendicular to the sample plane of (111) iron garnet single crystal plate are presented. The response of the domain structure to the field pulses was studied by direct observations utilizing the stroboscopic technique. Experimentally obtained dependences of the speed of unidirectional motion of stripe domains on the parameters of external bipolar pulsed magnetic field are compared with the results of numerical simulations. © Published under licence by IOP Publishing Ltd.Ministry of Science and Higher Education of the Russian Federation: 3.6121.2017The work was performed within the framework of the basic part of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project 3.6121.2017)

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO
    corecore