123 research outputs found

    Extensive alternative polyadenylation during zebrafish development

    Get PDF
    The post-transcriptional fate of messenger RNAs (mRNAs) is largely dictated by their 3′ untranslated regions (3′ UTRs), which are defined by cleavage and polyadenylation (CPA) of pre-mRNAs. We used poly(A)-position profiling by sequencing (3P-seq) to map poly(A) sites at eight developmental stages and tissues in the zebrafish. Analysis of over 60 million 3P-seq reads substantially increased and improved existing 3′ UTR annotations, resulting in confidently identified 3′ UTRs for >79% of the annotated protein-coding genes in zebrafish. mRNAs from most zebrafish genes undergo alternative CPA, with those from more than a thousand genes using different dominant 3′ UTRs at different stages. These included one of the poly(A) polymerase genes, for which alternative CPA reinforces its repression in the ovary. 3′ UTRs tend to be shortest in the ovaries and longest in the brain. Isoforms with some of the shortest 3′ UTRs are highly expressed in the ovary, yet absent in the maternally contributed RNAs of the embryo, perhaps because their 3′ UTRs are too short to accommodate a uridine-rich motif required for stability of the maternal mRNA. At 2 h post-fertilization, thousands of unique poly(A) sites appear at locations lacking a typical polyadenylation signal, which suggests a wave of widespread cytoplasmic polyadenylation of mRNA degradation intermediates. Our insights into the identities, formation, and evolution of zebrafish 3′ UTRs provide a resource for studying gene regulation during vertebrate development.National Institutes of Health (U.S.) (Grant GM067031)

    Experimental strategies for microRNA target identification

    Get PDF
    MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression in most biological processes. They act by guiding the RNAi-induced silencing complex (RISC) to partially complementary sequences in target mRNAs to suppress gene expression by a combination of translation inhibition and mRNA decay. The commonly accepted mechanism of miRNA targeting in animals involves an interaction between the 5′-end of the miRNA called the ‘seed region’ and the 3′ untranslated region (3′-UTR) of the mRNA. Many target prediction algorithms are based around such a model, though increasing evidence demonstrates that targeting can also be mediated through sites other than the 3′-UTR and that seed region base pairing is not always required. The power and validity of such in silico data can be therefore hindered by the simplified rules used to represent targeting interactions. Experimentation is essential to identify genuine miRNA targets, however many experimental modalities exist and their limitations need to be understood. This review summarizes and critiques the existing experimental techniques for miRNA target identification

    Towards computational prediction of microRNA function and activity

    Get PDF
    While it has been established that microRNAs (miRNAs) play key roles throughout development and are dysregulated in many human pathologies, the specific processes and pathways regulated by individual miRNAs are mostly unknown. Here, we use computational target predictions in order to automatically infer the processes affected by human miRNAs. Our approach improves upon standard statistical tools by addressing specific characteristics of miRNA regulation. Our analysis is based on a novel compendium of experimentally verified miRNA-pathway and miRNA-process associations that we constructed, which can be a useful resource by itself. Our method also predicts novel miRNA-regulated pathways, refines the annotation of miRNAs for which only crude functions are known, and assigns differential functions to miRNAs with closely related sequences. Applying our approach to groups of co-expressed genes allows us to identify miRNAs and genomic miRNA clusters with functional importance in specific stages of early human development. A full list of the predicted mRNA functions is available at http://acgt.cs.tau.ac.il/fame/

    Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing

    Get PDF
    Most metazoan microRNA (miRNA) target sites have perfect pairing to the seed region, located near the miRNA 5′ end. Although pairing to the 3′ region sometimes supplements seed matches or compensates for mismatches, pairing to the central region has been known to function only at rare sites that impart Argonaute-catalyzed mRNA cleavage. Here, we present “centered sites,” a class of miRNA target sites that lack both perfect seed pairing and 3′-compensatory pairing and instead have 11–12 contiguous Watson-Crick pairs to the center of the miRNA. Although centered sites can impart mRNA cleavage in vitro (in elevated Mg[superscript 2+]), in cells they repress protein output without consequential Argonaute-catalyzed cleavage. Our study also identified extensively paired sites that are cleavage substrates in cultured cells and human brain. This expanded repertoire of cleavage targets and the identification of the centered site type help explain why central regions of many miRNAs are evolutionarily conserved.National Institutes of Health (U.S.)Damon Runyon Cancer Research Foundation. Fellowship Awar

    MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion

    Get PDF
    One of the most interesting challenges facing paleobiologists is explaining the Cambrian explosion, the dramatic appearance of most metazoan animal phyla in the Early Cambrian, and the subsequent stability of these body plans over the ensuing 530 million years. We propose that because phenotypic variation decreases through geologic time, because microRNAs (miRNAs) increase genic precision, by turning an imprecise number of mRNA transcripts into a more precise number of protein molecules, and because miRNAs are continuously being added to metazoan genomes through geologic time, miRNAs might be instrumental in the canalization of development. Further, miRNAs ultimately allow for natural selection to elaborate morphological complexity, because by reducing gene expression variability, miRNAs increase heritability, allowing selection to change characters more effectively. Hence, miRNAs might play an important role in shaping metazoan macroevolution, and might be part of the solution to the Cambrian conundrum

    Transposon-driven transcription is a conserved feature of vertebrate spermatogenesis and transcript evolution.

    Get PDF
    Spermatogenesis is associated with major and unique changes to chromosomes and chromatin. Here, we sought to understand the impact of these changes on spermatogenic transcriptomes. We show that long terminal repeats (LTRs) of specific mouse endogenous retroviruses (ERVs) drive the expression of many long non-coding transcripts (lncRNA). This process occurs post-mitotically predominantly in spermatocytes and round spermatids. We demonstrate that this transposon-driven lncRNA expression is a conserved feature of vertebrate spermatogenesis. We propose that transposon promoters are a mechanism by which the genome can explore novel transcriptional substrates, increasing evolutionary plasticity and allowing for the genesis of novel coding and non-coding genes. Accordingly, we show that a small fraction of these novel ERV-driven transcripts encode short open reading frames that produce detectable peptides. Finally, we find that distinct ERV elements from the same subfamilies act as differentially activated promoters in a tissue-specific context. In summary, we demonstrate that LTRs can act as tissue-specific promoters and contribute to post-mitotic spermatogenic transcriptome diversity

    Zebrafish homologs of 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Get PDF
    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ~50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.Simons Foundation (Grant Number 95091

    Enteric Neural Crest Differentiation in Ganglioneuromas Implicates Hedgehog Signaling in Peripheral Neuroblastic Tumor Pathogenesis

    Get PDF
    Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways

    Evidence for Positive Selection on a Number of MicroRNA Regulatory Interactions during Recent Human Evolution

    Get PDF
    MicroRNA (miRNA)–mediated gene regulation is of critical functional importance in animals and is thought to be largely constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155 regulation and demonstrate that these alleles are selected with different modes among human populations, causing a strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network in recent human evolution
    corecore