21 research outputs found

    Limits on Achievable Intensity Reduction with an Optical Occulter

    Get PDF
    Deep shadowing of a normally incident plane wave by an opaque circular disk is partially negated by the formation of a region of strong intensity surrounding the axis passing normally through the disk center. This local intensity enhancement, historically referred to as the Poisson Spot (also known as the Spot of Arago), has been the principal source of difficulties in applications where a significant reduction of the incident intensity is essential. In particular, the NASA Terrestrial Planet Finder's (TPF) mission requires suppression of direct starlight by at least 10 orders of magnitude over the entire visible spectral range. One technique that has been proposed for blocking the direct starlight is to use a rotationally symmetric disk with petallike segments along its boundary. We find that, even though such configurations could, indeed, theoretically provide the desired intensity reduction, they would require unreasonably small radii of curvature at the petals' tips (in the range of micrometers). When the radii of curvature are increased to 3 mm, the intensity reduction drops to a modest 5 to 6 orders of magnitude. Given that for the NASA's TPF mission the proposed occulter radius would be on the order of 25 m, even the 3 mm radius of curvature would be too small for any practical implementation. Further increases of the radius of curvature result in progressively poorer intensity suppression. As an alternative solution we propose an apodized circular disk. We show that with an optimized apodization function, intensity reductions of at least 10 orders of magnitude can be achieved over the entire visible spectral range. Numerical results are presented for parameters appropriate to the NASA TPF mission

    Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum

    Get PDF
    The presence of the Poisson Spot, also known as the spot of Arago, has been known since the 18th century. This spot is the consequence of constructive interference of light diffracted by the edge of the obstacle where the central position can be determined by symmetry of the object. More recently, many NASA missions require the suppression of this spot in the visible range. For instance, the exoplanetary missions involving space telescopes require telescopes to image the planetary bodies orbiting central stars. For this purpose, the starlight needs to be suppressed by several orders of magnitude in order to image the reflected light from the orbiting planet. For the Earth-like planets, this suppression needs to be at least ten orders of magnitude. One of the common methods of suppression involves sharp binary petaled occulters envisioned to be placed many thousands of miles away from the telescope blocking the starlight. The suppression of the Poisson Spot by binary sharp petal tips can be problematic when the thickness of the tips becomes smaller than the wavelength of the incident beam. First they are difficult to manufacture and also it invalidates the laws of physical optics. The proposed partially transparent petaled masks/occulters compensate for this sharpness with transparency along the surface of the petals. Depending on the geometry of the problem, this transparency can be customized such that only a small region of the petal is transparent and the remaining of the surface is opaque. This feature allows easy fabrication of this type of occultation device either as a mask or occulter. A partially transparent petaled mask/ occulter has been designed for the visible spectrum range. The mask/occulter can suppress the intensity along the optical axis up to ten orders of magnitude. The design process can tailor the mask shape, number of petals, and transparency level to the near-field and farfield diffraction region. The mask/occulter can be used in space astronomy, ground-based telescope, and high-energy laser systems, and optical lithography to eliminate the Poisson Spot

    Proposing a novel method for clock synchronization by Reducing the Number of Synchronization Messages and Eliminating Non-Deterministic Errors in Wireless Sensor Network

    Get PDF
    Wireless sensor networks (WSNs) of spatially distributed autonomous sensors are used to monitor physical or environmental conditions such as temperature, sound, pressure, etc. They are also used to cooperatively pass the collected data through the network to a main location. Due to the application of wireless sensor networks as a monitoring device in the real world, the physical time of the occurrence of events is important. Since WSNs have particular constraints and limitations, synchronizing the physical times for these networks is considered to be a complex task. Although many algorithms have been proposed for synchronizing time in the network, there are two main error factors in all the proposed algorithms. The first factor is the clock drift which might be caused by the influence of different environmental factors such as temperature, ambient temperature, humidity, it might be generated on crystal oscillator which is inevitable The second error factor is indeterminacy which is attributed to the existence of non-deterministic delays in sending and receiving messages between sensor nodes. These two factors together reduce the precision of synchronization algorithms. In this paper, the researchers proposed a new approach for dealing with the above-mentioned two problems and achieving better synchronization. The proposed approach is a combination of flooding time synchronization protocol (FTSP) and reference broadcast synchronization (RBS).This approach is intended to increase synchronization accuracy and network lifetime by reducing the number of synchronization messages sent between nodes and eliminating the most of non-deterministic errors in sending messages. The results of simulations conducted in the study indicated that the proposed approach is significantly more efficient than the FTSP and RBS methods in terms of parameters such as accurate synchronization, amount of sent packets and power consumption

    Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    Get PDF
    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion

    Fabrication and Test of an Optical Magnetic Mirror

    Get PDF
    Traditional mirrors at optical wavelengths use thin metalized or dielectric layers of uniform thickness to approximate a perfect electric field boundary condition. The electron gas in such a mirror configuration oscillates in response to the incident photons and subsequently re-emits fields where the propagation and electric field vectors have been inverted and the phase of the incident magnetic field is preserved. We proposed fabrication of sub-wavelength-scale conductive structures that could be used to interact with light at a nano-scale and enable synthesis of the desired perfect magnetic-field boundary condition. In a magnetic mirror, the interaction of light with the nanowires, dielectric layer and ground plate, inverts the magnetic field vector resulting in a zero degree phase shift upon reflection. Geometries such as split ring resonators and sinusoidal conductive strips were shown to demonstrate magnetic mirror behavior in the microwave and then in the visible. Work to design, fabricate and test a magnetic mirror began in 2007 at the NASA Goddard Space Flight Center (GSFC) under an Internal Research and Development (IRAD) award Our initial nanowire geometry was sinusoidal but orthogonally asymmetric in spatial frequency, which allowed clear indications of its behavior by polarization. We report on the fabrication steps and testing of magnetic mirrors using a phase shifting interferometer and the first far-field imaging of an optical magnetic mirror

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Aqueous Two-Phase Systems: A New Approach for the Determination of Brilliant Blue FCF in Water and Food Samples

    Get PDF
    A novel, simple, and more sensitive spectrophotometric procedure has been developed for the determination of brilliant blue FCF in water and food samples by an aqueous two-phase system (ATPS). In this method, adequate amount of polyethylene glycol/ sodium carbonate (PEG-4000/Na2CO3) was added to aqueous solution for formation of a homogeneous solution. To the mixture solution, suitable amount of Na2CO3 was added, the mixture solution was shaken until the salt was dissolved, and then it was separated into two clear phases easily and rapidly. The target analyte in the water sample was extracted into the polyethylene glycol phase. After extraction, measuring the absorbance at 634 nm was done. The effects of different parameters such as polyethylene glycol (type and concentration), pH, salt (type and amount), centrifuge time, and temperature on the ATPS of dye was investigated and optimum conditions were established. Linear calibration curves were obtained in the range of 0.25–750 ng/mL for brilliant blue FCF under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.12 ng/mL. The relative standard deviation (RSD) for 400 ng/mL was 3.14%. The method was successfully applied to the determination of brilliant blue FCF in spiked samples with satisfactory results. The relative recovery was between 96.0 and 102.2%

    Restorer: An Example of Constant Data Gaps

    No full text
    Restorer is a visualization technique for indicating the location of missing data in a scientific visualization. Rather than filling missing data regions with interpolated data colored with the same scale as real data or simply leaving such regions empty, the restorer technique fills the regions with interpolated data colored with a color table with only luminance values. This technique allows missing data to be indicated clearly without distracting from the content of the real data. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional

    Restorer: An Example with Ozone Data

    No full text
    Restorer is a visualization technique for indicating the location of missing data in a scientific visualization. Rather than filling missing data regions with interpolated data colored with the same scale as real data or simply leaving such regions empty, the restorer technique fills the regions with interpolated data colored with a color table with only luminance values. This technique allows missing data to be indicated clearly without distracting from the content of the real data. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional
    corecore